Home
Class 12
MATHS
Suppose f(x) and g(x) are two continuou...

Suppose `f(x) and g(x)` are two continuous functions defined for `0<=x<=1`.Given, `f(x)=int_0^1 e^(x+1) .f(t) dt and g(x)=int_0^1 e^(x+1) *g(t) dt+x` The value of `f( 1)` equals

A

0

B

`(1)/(3)`

C

`(1)/(e^(2)`

D

`(2)/(e^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|4 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|10 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x) and g(x) be two continuous functions defined from R rarr R, such that f(x_(1))>f(x_(2)) and g(x_(1)) f(g(3 alpha-4))

If f(x) and g(x) are two continuous functions defined on [-a,a], then the value of int_(-a)^(a){f(x)+f(-x)}{g(x)-g(-x)}dx is

if f(x) and g(x) are continuous functions, fog is identity function, g'(b) = 5 and g(b) = a then f'(a) is

If f(x) and g(x) are continuous functions satisfying f(x) = f(a-x) and g(x) + g(a-x) = 2 , then what is int_(0)^(a) f(x) g(x)dx equal to ?

If f(x) and g(x) are continuous functions satisfying f(x)=f(a-x) and g(x)+g(a-x)=2 then what is int_0^a f(x) g(x) dx equal to

Property 5: If f(x) is a continuous function defined on [0;a] then int_(0)^(a)f(x)dx=int_(0)f(a-x)dx

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Passage Based Questions)
  1. Suppose lim(xrarr0) (int(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- si...

    Text Solution

    |

  2. Suppose lim(xrarr0)(int(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sinx...

    Text Solution

    |

  3. Suppose sum(x to 0)(int(0)^(x)(t^(2) dt)/((a+t^(r))^(1//p)))/(bx- sin...

    Text Solution

    |

  4. Suppose f(x) and g(x) are two continuous functions defined for 0<=x<...

    Text Solution

    |

  5. Suppose f(x) and g(x) are two continuous functions defined for 0<=x<...

    Text Solution

    |

  6. Suppose f(x) and g(x) are two continuous functions defined for 0<=x<...

    Text Solution

    |

  7. We are given the curvers y=int(- infty)^(x) f(t) dt through the point ...

    Text Solution

    |

  8. We are given the curves y=int(-oo)^(x)f(t) dt through the point (0,(...

    Text Solution

    |

  9. We are given the curvers y=int(- infty)^(x) f(t) dt through the point ...

    Text Solution

    |

  10. f(x)=int(0)^(x) (4t^(4)-at^(3)) dt and g(x) is quadratic satifying g(...

    Text Solution

    |

  11. f(x)=int(0)^(x) (4t^(4)-at^(3)) dt and g(x) is quadratic satifying g(...

    Text Solution

    |

  12. f(x)=int(0)^(x) (4t^(4)-at^(3)) dt and g(x) is quadratic satifying g(...

    Text Solution

    |

  13. If y = underset(u(x))overset(v(x))intf(t) dt, let us define (dy)/(dx) ...

    Text Solution

    |

  14. Let y= int(u(x))^(y(x)) f (t) dt, let us define (dy)/(dx) as (dy)/(dx)...

    Text Solution

    |

  15. If y = underset(u(x))overset(v(x))intf(t) dt, let us define (dy)/(dx) ...

    Text Solution

    |

  16. Consider f:(0, oo)->(-pi/2,pi/2), defined as f(x) = tan^-1 (loge x/(...

    Text Solution

    |

  17. The value of int(0)^(infty)[tan^(-1)x] dx is equal to (where ,[.] deno...

    Text Solution

    |