Home
Class 12
MATHS
Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^...

Let `f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x ` for all `x in(-(pi)/(2),(pi)/(2))`. Then the correct expression (s) is are

A

` int_(0)^(pi//4)xf(x) dx =(1)/(12)`

B

` int_(0)^(pi//4)f(x) dx =0`

C

` int_(0)^(pi//4)xf(x) dx =(1)/(6)`

D

` int_(0)^(pi//4)f(x) dx =1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x \) and find the correct expressions based on the given options. ### Step 1: Rewrite the function We can rewrite the function \( f(x) \) as follows: \[ f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x \] ### Step 2: Factor out common terms Notice that we can factor out \( \tan^2 x \) from the expression: \[ f(x) = \tan^2 x \left( 7 \tan^6 x + 7 \tan^4 x - 3 \tan^2 x - 3 \right) \] ### Step 3: Substitute \( t = \tan^2 x \) Let \( t = \tan^2 x \). Then the function becomes: \[ f(x) = t \left( 7t^3 + 7t^2 - 3t - 3 \right) \] ### Step 4: Analyze the polynomial Now we need to analyze the polynomial \( 7t^3 + 7t^2 - 3t - 3 \). We can check for roots or use the Rational Root Theorem to find possible rational roots. ### Step 5: Finding the roots By testing values, we find that \( t = 1 \) is a root: \[ 7(1)^3 + 7(1)^2 - 3(1) - 3 = 7 + 7 - 3 - 3 = 8 \quad \text{(not a root)} \] Testing \( t = -1 \): \[ 7(-1)^3 + 7(-1)^2 - 3(-1) - 3 = -7 + 7 + 3 - 3 = 0 \quad \text{(is a root)} \] ### Step 6: Polynomial division Now we can perform polynomial long division to factor \( 7t^3 + 7t^2 - 3t - 3 \) by \( t + 1 \). ### Step 7: Factor the polynomial After performing the division, we find: \[ 7t^3 + 7t^2 - 3t - 3 = (t + 1)(7t^2 + 0t - 3) \] ### Step 8: Solve the quadratic Now we can solve \( 7t^2 - 3 = 0 \): \[ t^2 = \frac{3}{7} \implies t = \sqrt{\frac{3}{7}} \quad \text{(since \( t = \tan^2 x \) must be non-negative)} \] ### Step 9: Substitute back to find \( x \) Thus, we have: \[ \tan^2 x = 1 \quad \text{or} \quad \tan^2 x = \frac{3}{7} \] This gives us: \[ x = \frac{\pi}{4} \quad \text{or} \quad x = \tan^{-1}\left(\sqrt{\frac{3}{7}}\right) \] ### Conclusion The correct expressions for \( f(x) \) based on the evaluation and roots found are: - \( x = \frac{\pi}{4} \) - \( x = \tan^{-1}\left(\sqrt{\frac{3}{7}}\right) \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=7tan^(8)x+7tan^(6)x-3tan^(4)x-3tan^(2)x for all x in(-(pi)/(2),(pi)/(2))* Then the correct expression (s) is (are) (a) int_(0)^((pi)/(4))xf(x)dx=(1)/(12) (b) int_(0)^((pi)/(4))f(x)dx=0( c) int_(0)^((1)/(4))xf(x)=(1)/(6)(d)int_(0)^((pi)/(4))f(x)dx=(1)/(12)

Solve 3tan2x-4tan3x=tan^(2)3x tan2x

Let f(x)=7Tan^(8)x+7Tan^(6)x-4tan^(5)x-4tan^(3)x and int f(x)dx=g(x) where g(0)=0 then the value of g((pi)/(4))=

F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

tan3x-tan2x-tan x=tan3x tan2x tan x

If f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty for olt x lt pi/4 , "than" int_(0)^(pi//4) f (x) dx=

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

tan((pi)/(4)+(x)/(2))+tan((pi)/(4)-(x)/(2))=2 then the general solution of x=

The value lim_(x to tan^(-1) 3) (tan^6 x- 2tan^5 x - 3tan^4 x)/(tan^2 x -4 tan x+3)

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The value of int(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal ...

    Text Solution

    |

  2. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  3. Let f(x)=7 tan^(8) x +7 tan^(6) x-3 tan^(4) x-3 tan^(2)x for all x in...

    Text Solution

    |

  4. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  5. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  6. Let F:R- R be a thrice differentiable function. Suppose that F(1)=0,F(...

    Text Solution

    |

  7. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  8. Let f: RvecR be a function defined by f(x)={[x],xlt=2 0,x >2 where [...

    Text Solution

    |

  9. If alpha=int0^1(e^9x+3tan^((-1)x))((12+9x^2)/(1+x^2))dxw h e r etan^(-...

    Text Solution

    |

  10. The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equ...

    Text Solution

    |

  11. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  12. Match the conditions/ expressions in Column I with statement in Column...

    Text Solution

    |

  13. Match List I with List II and select the correct answer using codes gi...

    Text Solution

    |

  14. The value of int0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dxi s

    Text Solution

    |

  15. The value of the integral int(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi...

    Text Solution

    |

  16. The value of int(sqrt(ln2))^(sqrt(ln3)) (xsinx^2)/(sinx^2+sin(ln6-x^2)...

    Text Solution

    |

  17. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  18. The value of int(0)^(1) (x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

    Text Solution

    |

  19. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  20. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |