Home
Class 12
MATHS
Let p(x) be a function defined on R suc...

Let `p(x)` be a function defined on R such that `lim_(xrarr infty) f (3x)/(f(x))=1,p'(x)=p'(1-x),"for all" x in [0,1],p(0)=1 and p(1)=41."Then" , int_(0)^(1)p(x) dx` equals

A

`sqrt41`

B

21

C

41

D

42

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Let p(x) be a function defined on R such that (lim)_(x->oo)(f(3x))/(f(x))=1,\ p^(prime)(x)=p^(prime)(1-x),\ for\ a l l\ x in [0,\ 1],\ p(0)=\ 1a n d\ p(1)=41. Then int_0^1p(x)dx equals a. sqrt(41) b. 21 c. 41 d. 42

Let p(x) be a function defined on R such that p '(x)""=""p '(1""""x) , for all x in [0,""1],""p(0)""=""1 and p(1)""=""41 . Then int_0^1p(x)dx equals (1) 21 (2) 41 (3) 42 (4) sqrt(41)

Let p(x) be a function defined on R such that p'(x)=p'(1-x) for all x epsilon[0,1],p(0)=1, and p(1)=41 . Then int_(0)^(1)p(x)dx is equal to

Let f(x) be defined for all x in R such that lim_(xrarr0) [f(x)+log(1-(1)/(e^(f(x))))-log(f(x))]=0 . Then f(0) is

(x^(2)+x+1)p(x-1)=(x^(2)-x+1)p(x) If p(1)=3 then find int_(-2)^(1)(dx)/(p(x)+x)

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

P(x) is a non-zero polynomial such that P(0)=0 and P(x^(3))=x^(4)P(x).P'(1)=7 and int_(0)^(1)P(x)=1.5 then int_(0)^(1)P(x)P'(x)dx=

Let f(x) be a nonzero function whose all successive derivative exist and are nonzero.If f(x),f'(x) and f''(x) are in G.P.and f(0)=1,f'(0)=1, then -

Let p (x) be a real polynomial of degree 4 having extreme values x=1 and x=2.if lim_(xrarr0) (p(x))/(x^2)=1 , then p(4) is equal to

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  2. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  3. Which of the following is true?

    Text Solution

    |

  4. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  5. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  6. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  7. Let Sn=sum(k=0)^n n/(n^2+k n+k^2) and Tn=sum(k=0)^(n-1)n/(n^2+k n+k...

    Text Solution

    |

  8. The Integral int(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: ...

    Text Solution

    |

  9. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  10. lim(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

    Text Solution

    |

  11. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  12. The integral int(0)^(pi) sqrt(1+4 sin )(x)/(2) -4 "sin" (x)/(2) dx is...

    Text Solution

    |

  13. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  14. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  15. Ifg(x)= int(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

    Text Solution

    |

  16. The value of int(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  17. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  18. Let p(x) be a function defined on R such that lim(xrarr infty) f (3x...

    Text Solution

    |

  19. int(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is ...

    Text Solution

    |

  20. Let I=int(0)^(1)(sinx)/(sqrtx) dx and f= int(0)^(1)( cos x)/(sqrtx) dx...

    Text Solution

    |