Home
Class 12
MATHS
int(0)^(pi)[cos x] dx, [ ] denotes the g...

`int_(0)^(pi)[cos x] dx, [ ]` denotes the greatest integer function , is equal to

A

`(pi)/(2)`

B

1

C

`(-1)`

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} [\cos x] \, dx \), where \([ \cdot ]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the behavior of \(\cos x\) on the interval \([0, \pi]\) The function \(\cos x\) decreases from 1 to -1 as \(x\) goes from 0 to \(\pi\). Therefore, we can find the intervals where \([\cos x]\) takes specific integer values. - At \(x = 0\), \(\cos(0) = 1\) so \([\cos(0)] = 1\). - At \(x = \frac{\pi}{3}\), \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2\) so \([\cos\left(\frac{\pi}{3}\right)] = 0\). - At \(x = \frac{\pi}{2}\), \(\cos\left(\frac{\pi}{2}\right) = 0\) so \([\cos\left(\frac{\pi}{2}\right)] = 0\). - At \(x = \frac{2\pi}{3}\), \(\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\) so \([\cos\left(\frac{2\pi}{3}\right)] = -1\). - At \(x = \pi\), \(\cos(\pi) = -1\) so \([\cos(\pi)] = -1\). ### Step 2: Determine the intervals for the greatest integer function From the above analysis, we can conclude: - For \(x \in [0, \frac{\pi}{3})\), \([\cos x] = 1\). - For \(x \in [\frac{\pi}{3}, \frac{2\pi}{3})\), \([\cos x] = 0\). - For \(x \in [\frac{2\pi}{3}, \pi]\), \([\cos x] = -1\). ### Step 3: Break down the integral into parts Now we can express the integral \(I\) as the sum of integrals over these intervals: \[ I = \int_{0}^{\frac{\pi}{3}} 1 \, dx + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 0 \, dx + \int_{\frac{2\pi}{3}}^{\pi} (-1) \, dx \] ### Step 4: Calculate each integral 1. **First integral**: \[ \int_{0}^{\frac{\pi}{3}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{3}} = \frac{\pi}{3} - 0 = \frac{\pi}{3} \] 2. **Second integral**: \[ \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} 0 \, dx = 0 \] 3. **Third integral**: \[ \int_{\frac{2\pi}{3}}^{\pi} (-1) \, dx = -\left[ x \right]_{\frac{2\pi}{3}}^{\pi} = -\left( \pi - \frac{2\pi}{3} \right) = -\left( \frac{\pi}{3} \right) = -\frac{\pi}{3} \] ### Step 5: Combine the results Now, we can combine the results of the integrals: \[ I = \frac{\pi}{3} + 0 - \frac{\pi}{3} = 0 \] ### Final Answer Thus, the value of the integral is: \[ I = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|5 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

int[cot x]dx ,where [.] denotes the greatest integer function,is equal to (1)pi/2 (2) 1(3) (4)

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Evaluate: int_(0)^(2 pi)[sin x]dx, where [.] denotes the greatest integer function.

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

ARIHANT MATHS-DEFINITE INTEGRAL-Exercise (Questions Asked In Previous 13 Years Exam)
  1. For a in R ( the set of all real number) , a ne -1, lim(n to oo)((1^...

    Text Solution

    |

  2. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  3. Which of the following is true?

    Text Solution

    |

  4. For any real number x ,l e t[x] denote the largest integer less than o...

    Text Solution

    |

  5. Let f be a non-negative function defined on the interval .[0,1].If int...

    Text Solution

    |

  6. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  7. Let Sn=sum(k=0)^n n/(n^2+k n+k^2) and Tn=sum(k=0)^(n-1)n/(n^2+k n+k...

    Text Solution

    |

  8. The Integral int(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: ...

    Text Solution

    |

  9. Let In=int tan^n x dx, (n>1). If I4+I6=a tan^5 x + bx^5 + C, Where C...

    Text Solution

    |

  10. lim(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

    Text Solution

    |

  11. The integral int2^4(logx^2)/(logx^2+log(36-12 x+x^2)dx is equal to:...

    Text Solution

    |

  12. The integral int(0)^(pi) sqrt(1+4 sin )(x)/(2) -4 "sin" (x)/(2) dx is...

    Text Solution

    |

  13. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  14. The intercepts on x-axis made by tangents to the curve, y=int0^x|t|...

    Text Solution

    |

  15. Ifg(x)= int(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

    Text Solution

    |

  16. The value of int(0)^(1) (8 log(1+x))/(1+x^(2)) dx is

    Text Solution

    |

  17. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  18. Let p(x) be a function defined on R such that lim(xrarr infty) f (3x...

    Text Solution

    |

  19. int(0)^(pi)[cos x] dx, [ ] denotes the greatest integer function , is ...

    Text Solution

    |

  20. Let I=int(0)^(1)(sinx)/(sqrtx) dx and f= int(0)^(1)( cos x)/(sqrtx) dx...

    Text Solution

    |