Home
Class 12
MATHS
If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0...

If `(y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0,` then the value of `xysqrt(y^(2)-x^(2)),` is

A

`y^(2)+x`

B

`xy^(2)`

C

any contant

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by: \[ (y^3 - 2x^2y)dx + (2xy^2 - x^3)dy = 0, \] we will follow these steps: ### Step 1: Rearranging the Equation We can rearrange the equation into the form of \(\frac{dy}{dx}\): \[ (2xy^2 - x^3)dy = -(y^3 - 2x^2y)dx. \] Dividing both sides by \(dx\) and \(2xy^2 - x^3\): \[ \frac{dy}{dx} = -\frac{y^3 - 2x^2y}{2xy^2 - x^3}. \] ### Step 2: Substituting \(y = vx\) Let \(y = vx\), where \(v\) is a function of \(x\). Then, we have: \[ \frac{dy}{dx} = v + x\frac{dv}{dx}. \] Substituting \(y\) into the equation gives: \[ \frac{dy}{dx} = v + x\frac{dv}{dx} = -\frac{(vx)^3 - 2x^2(vx)}{2x(vx)^2 - x^3}. \] ### Step 3: Simplifying the Equation Substituting \(y = vx\) into the right side: \[ = -\frac{v^3x^3 - 2vx^3}{2vx^3 - x^3} = -\frac{x^3(v^3 - 2v)}{x^3(2v - 1)} = -\frac{v^3 - 2v}{2v - 1}. \] Thus, we have: \[ v + x\frac{dv}{dx} = -\frac{v^3 - 2v}{2v - 1}. \] ### Step 4: Rearranging the Equation Rearranging gives: \[ x\frac{dv}{dx} = -\frac{v^3 - 2v}{2v - 1} - v. \] ### Step 5: Finding a Common Denominator Combining the fractions: \[ x\frac{dv}{dx} = -\frac{v^3 - 2v + v(2v - 1)}{2v - 1} = -\frac{v^3 + v^2 - 2v}{2v - 1}. \] ### Step 6: Separating Variables Now, we can separate variables: \[ \frac{2v - 1}{v^3 + v^2 - 2v} dv = -\frac{1}{x} dx. \] ### Step 7: Integrating Both Sides Integrate both sides: \[ \int \frac{2v - 1}{v^3 + v^2 - 2v} dv = -\int \frac{1}{x} dx. \] ### Step 8: Solving the Integrals The left side can be solved using partial fractions, and the right side gives: \[ -\ln|x| + C. \] ### Step 9: Back Substituting for \(y\) After solving the integral, we substitute back \(v = \frac{y}{x}\) to find the relation between \(y\) and \(x\). ### Step 10: Finding \(x y \sqrt{y^2 - x^2}\) From the derived relation, we can express \(xy\sqrt{y^2 - x^2}\) in terms of a constant \(C\): \[ xy\sqrt{y^2 - x^2} = C. \] ### Conclusion Thus, the value of \(xy\sqrt{y^2 - x^2}\) is a constant \(C\). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 4|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise For Session 1|10 Videos
  • DETERMINANTS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos

Similar Questions

Explore conceptually related problems

(x^(3)-3xy^(2))dx=(y^(3)-3x^(2)y)dy

(x^(3)+3xy^(2))dx+(y^(3)+3x^(2)y)dy=0

y^(2)dx+(x^(2)+xy+y^(2))dy=0

(x^(2)-x^(2)y)dy+(y^(2)+xy^(2))dx=0

(3xy+y^(2))dx+(x^(2)+xy)dy=0

If (2xy-y^(2)-y)dx = (2xy+x-x^(2))dy and y(1)=1 ,then the value of y(-1) is

(dy)/(dx)=(y^(3)-2x^(2)y)/(x^(3))

x^(2)(dy)/(dx)+y^(2)=xy

Solve: (x^(3)+3xy^(2))dx=(y^(3)-3x^(2)y)dy

(x^(2)-2xy-y^(2))dx-(x+y)^(2)dy=0