Home
Class 12
MATHS
Given that , tan^(-1) ((2x)/(1-x^(2)))...

Given that ,
`tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):}`
`sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):}`
`sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1`
`sin^(-1) ((4x)/(x^(2)+4)) + 2 tan^(-1)( - x/2)` is independent of x, then

A

`x in [-3,4]`

B

`x in [-2,2]`

C

`x in [-1,1]`

D

`x in [1,infty)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

Given that , tan^(-1) ((2x)/(1-x^(2))) = {{:(2 tan^(-1) x"," |x| le 1),(-pi +2 tan^(-1)x","x gt 1),(pi+2 tan^(-1)x"," x lt -1):} sin^(-1)((2x)/(1+x^(2))) ={{:(2 tan^(-1)x","|x|le1),(pi -2 tan^(-1)x","x gt 1 and ),(-(pi+2tan^(-1))","x lt -1):} sin^(-1) x + cos^(-1) x = pi//2 " for " - 1 le x le 1 If cos^(-1). (6x)/(1 + 9x^(2)) = - pi/2 + 2 tan^(-1) 3x" , then " x in

Show that sin^(-1)(2x)/(1+x^(2))=[(2tan^(-1)x,"if",|x|le1),(pi-2tan^(-1)x,"if",xgt1),(-(pi+2tan^(-1)x),"if",xlt-1):}

tan^(-1)((1+x)/(1-x))=(pi)/(4)+tan^(-1)x,x<1

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Prove that tan^(-1).(1)/(sqrt(x^(2) -1)) = (pi)/(2) - sec^(-1) x, x gt 1

sin^(-1)((1-tan^(2)x)/(1+tan^(2)x))

2 tan^(-1) x = sin^(-1) ((2x)/(1+x^(2))) , 1 le x le 1

If x gt 1 then 2tan^(-1)x - tan^(-1) ((2x)/(1-x^(2))) =______.