Home
Class 12
MATHS
For x, y, z, t in R, sin^(-1) x + cos^(-...

For `x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi`
The value of `cos^(-1) ("min" {x, y, z})` is

A

0

B

`pi/2`

C

`pi`

D

`pi/3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos

Similar Questions

Explore conceptually related problems

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The principal value of cos^(-1) (cos 5t^(2)) is

For x, y, z, t in R, sin^(-1) x + cos^(-1) y + sec^(-1) z ge t^(2) - sqrt(2pi t) + 3pi The value of x + y + z is equal to

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

For x,y,z,t in R , if sin^(-1)x+cos^(-1)y+sec^(-1)z ge t^(2)-sqrt(2pi)*t+3pi , then the value of tan^(-1)x+tan^(-1)y+tan^(-1)z+tan^(-1)( sqrt((2)/(pi))t) is __________.

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z+sin^(-1)t=2 pi then find the value of x^(2)+y^(2)+z^(2)+t^(2)