Home
Class 12
MATHS
Using lim(x rarr 0) (e^(x)-1)/(x)=1, ded...

Using `lim_(x rarr 0) (e^(x)-1)/(x)=1,` deduce that, `lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a` `[agt0].`

Promotional Banner

Topper's Solved these Questions

  • LIMIT

    CHHAYA PUBLICATION|Exercise EXERCISE (Short Answer Type Questions)|25 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise EXERCISE (Long Answer Type Questions)|8 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination(E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(x rarr 0) (e^(sinx)-1)/(x)

Evaluate: lim_(x rarr 0)(e^(4x)-1)/(x)

Using underset(xrarr0)"lim"(e^(x)-1)/(x)=1" deduce that ," underset(xrarr0)"lim"(a^(x)-1)/(x)=log_(e)a[agt0].

lim_(x->0)(e^(5x) - 1)/(3x)

Evaluate: lim_(x rarr 0) (e^(3x)-1)/(log(1+5x))

Evaluate: lim_(x rarr 0) (e^(2x)-1)/(sin3x)

The value of lim_(x rarr 0) (e^(x2)-1)/(x) is

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

The value of lim_(x rarr 0)(a^(2x)-1)/(2x) is

lim_(x to 0)(e^(2x)-1)/(sin 3x) = ?