Home
Class 12
MATHS
If intsinx d(secx)=f(x)-g(x)+c ,t h e n ...

If `intsinx d(secx)=f(x)-g(x)+c ,t h e n` `f(x)=secx` (b) `f(x)=tanx` `g(x)=2x` (d) `g(x)=x`

A

f(x) = sec x

B

f(x) = tan x

C

g(x) = 2x

D

g(x) = x

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Integar Answer Type)|5 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination ( Matrix Match Type)|2 Videos
  • IDENFINITE INTEGRAL

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|15 Videos
  • GENERAL SOLUTIONS OF TRIGNOMETRIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type-|2 Videos
  • INCREASING AND DECREASING FUNCTION

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=g(x) , then the value of int_(a)^(b)f(x)g(x)dx is -

If intsin^(-1)xcos^(-1)xdx=f^(-1)(x)[π/2x-xf^(-1)(x)-2sqrt(1-x^2)]+2x+C ,t h e n (a) f(x)=sinx (b) f(x)=cosx (c) f(x)=tanx (d) none of these

If g(f(x))=|sinx|a n df(g(x))=(sinsqrt(x))^2 , then a) f(x)=sin^2x ,g(x)=sqrt(x) b) f(x)=sinx ,g(x)=|x| c) f(x=x^2,g(x)=sinsqrt(x) d) fa n dg cannot be determined

int [f(x)g"(x) - f"(x)g(x)]dx is

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

f(x)=e^x.g(x) , g(0)=2 and g'(0)=1 then f'(0)=

If int g(x)dx = g(x) , then int g(x){f(x) - f'(x)}dx is equal to

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n a) both f(x)a n dg(x) are odd functions b) f(x) is monotonic function c) f(x)=g(x) has no real roots d) int(f(x))/(g(x))dx=-1/x+3/(x^3)+c

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].