Home
Class 12
PHYSICS
On the pole of the Earth a body is impar...

On the pole of the Earth a body is imparted velocity `v_0` directed vertically up. Knowing the radius of the Earth and the free-fall acceleration on its surface, find the height to which the body will ascend. The air drag is to be neglected.

Text Solution

Verified by Experts

Let the mass of the body be m and let it go upto a height h.
From conservation of mechanical energy of the system
`-(gammaMm)/(R)+1/2mv_0^2=(-gammaMm)/((R+h))=0`
Using `(gammaM)/(R^2)=g`, in above equation and on solving we get,
`h=(Rv_0^2)/(2gR-v_0^2)`
Promotional Banner

Topper's Solved these Questions

  • PHYSICAL FUNDAMENTALS OF MECHANICS

    IE IRODOV, LA SENA & SS KROTOV|Exercise Dynamics Of A Solid Body|56 Videos
  • PHYSICAL FUNDAMENTALS OF MECHANICS

    IE IRODOV, LA SENA & SS KROTOV|Exercise Elastic Deformation Of Asolid Body|25 Videos
  • PHYSICAL FUNDAMENTALS OF MECHANICS

    IE IRODOV, LA SENA & SS KROTOV|Exercise Laws Of Conservation Of Energy, Momentum And Angular Momentum|82 Videos
  • OSCILLATIONS AND WAVES

    IE IRODOV, LA SENA & SS KROTOV|Exercise Electromagnetic Waves, Radiation|36 Videos
  • THERMODYNAMICS AND MOLECULAR PHYSICS

    IE IRODOV, LA SENA & SS KROTOV|Exercise Transport Phenomena|38 Videos

Similar Questions

Explore conceptually related problems

A body is projected vertically upward from the surface of the earth, then the velocity-time graph is:-

At what height over the Earth's pole the free-fall acceleration decreases by one per cent, by half?

A particle is projected vertically upwards with a velocity sqrt(gR) , where R denotes the radius of the earth and g the acceleration due to gravity on the surface of the earth. Then the maximum height ascended by the particle is

A body of mass m is from surface of the earth projected vertically upwards with a velocity such that it rises to a height of 20 m. If the same body is projected with same velocity from a planet density is (1)/(4) th of density of earth and radius is (1)/(2) of that of Earth, then find the height to which the body will rise on the planet.

A body is projected vertically up from surface of the earth with a velocity half of escape velocity. The ratio of its maximum height of ascent and radius of earth is

A body projected from the surface of the earth attains a height equal to the radius of the earth. The velocity with which the body was projected is

As it falls, the acceleration of a body dropped from the height equal to that of radius of earth,

An artificial satellite is launched into a circular orbit around the Earth with velocity v relative to the reference frame moving translationally and fixed to the Earth's rotation axis. Find the distance from the satellite to the Earth's surface. The radius of the Earth and the free-fall acceleration on its surface are supposed to be known.

A projectile is fired vertically upwards from the surface of the earth with a velocity Kv_(e) , where v_(e) is the escape velocity and Klt1 .If R is the radius of the earth, the maximum height to which it will rise measured from the centre of the earth will be (neglect air resistance)

IE IRODOV, LA SENA & SS KROTOV-PHYSICAL FUNDAMENTALS OF MECHANICS-Universal Gravitation
  1. There is a uniform sphere of mass M and radius R. Find the strength G ...

    Text Solution

    |

  2. Inside a uniform sphere of density rho there is a spherical cavity who...

    Text Solution

    |

  3. A uniform sphere has a mass M and radius R. Find the pressure p inside...

    Text Solution

    |

  4. Find the proper potential energy of gravitational interaction of matte...

    Text Solution

    |

  5. Two Earth's satellites move in a common plane along circular orbits. T...

    Text Solution

    |

  6. Calculate the ratios of the following accelerations: the acceleration ...

    Text Solution

    |

  7. At what height over the Earth's pole the free-fall acceleration decrea...

    Text Solution

    |

  8. On the pole of the Earth a body is imparted velocity v0 directed verti...

    Text Solution

    |

  9. An artificial satellite is launched into a circular orbit around the E...

    Text Solution

    |

  10. Calculate the radius of the circular orbit of a stationary Earth's sat...

    Text Solution

    |

  11. A satellite revolving in a circular equatorial orbit of radius R = 2.0...

    Text Solution

    |

  12. A satellite revolves from east to west in a circular equatorial orbit ...

    Text Solution

    |

  13. A satellite must move in the equatorial plane of the Earth close to it...

    Text Solution

    |

  14. An artificial satellite of the Moon revolves in a circular orbit whose...

    Text Solution

    |

  15. Calculate the orbital and escape velocities for the Moon. Compare the ...

    Text Solution

    |

  16. A spaceship approaches the Moon along a parabolic trajectory which is ...

    Text Solution

    |

  17. A spaceship is launched into a circular orbit close to the Earth's sur...

    Text Solution

    |

  18. At what distance from the centre of the Moon is the point at which the...

    Text Solution

    |

  19. What is the minimum work that has to be performed to bring a spaceship...

    Text Solution

    |

  20. Find approximately the third cosmic velocity v3, i.e. the minimum velo...

    Text Solution

    |