Home
Class 12
MATHS
If H(x(0))=0 for some x=x(0)and (d)/(dx)...

If `H(x_(0))`=0 for some x=`x_(0)`and `(d)/(dx)H(x)gt2cxH(x)` for all `xgex_(0)`where `cgt0` then

Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise EXAMPLE|6 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log(cos h(2x))]=

Let f(x) and g(x) be two functions which are defined and differentiable for all x>=x_(0). If f(x_(0))=g(x_(0)) and f'(x)>g'(x) for all x>x_(0), then prove that f(x)>g(x) for all x>x_(0).

Iff (x) and g(x) be two function which are defined and differentiable for all x>=x_(0). If f(x_(0))=g(x_(0)) and f'(x)>g'(x) for all f>x_(0), then prove that f(x)>g(x) for all x>x_(0).

If ax^(2)+b/x ge c, AA x gt0 , where agt0,bgt0 then

The function f(x)= log_(c) x , where c gt 0, x gt 0 is

Let f(x) and g(x) be defined and differntiable for all x ge x_0 and f(x_0)=g(x_0) f(x) ge (x) for x gt x_0 then

Let f(xy)=f(xy) f(y)"for all"x gt 0, y gt 0 and f(1+x)=1+x[1+g(x)],"where "lim_(x to 0) , where g(x),"then " int(f(x))/(f'(x)) dx is

Let F(x)=f(x)g(x)h(x) for all real x, wheref (x),g(x), and h(x) are differentiable functions.At some point x_(0),F'(x_(0))=21F(x_(0)),f'(x_(0))=4f(x_(0)),g'(x_(0))=-7g(x_(0)) and h'(x_(0))=kh(x_(0)). Then k is

ARIHANT MATHS-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If H(x(0))=0 for some x=x(0)and (d)/(dx)H(x)gt2cxH(x) for all xgex(0)w...

    Text Solution

    |

  2. The least value of alpha in R for which 4alphax^(2)+(1)/(x)ge1, for al...

    Text Solution

    |

  3. The number of points in (-oo,oo) for which x^(2)-xsinx-cosx=0, is

    Text Solution

    |

  4. Let f : R ->(0,oo) and g : R -> R be twice differentiable functions...

    Text Solution

    |

  5. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  6. The fuction f(x)=2|x|+|x+2|-||x+2|-2|x|} has a local minimum or a loca...

    Text Solution

    |

  7. A rectagular sheet of fixed permeter with sides having thir lengths in...

    Text Solution

    |

  8. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  9. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  10. e total number of local maxima and local minima of the function f(x) =...

    Text Solution

    |

  11. If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)...

    Text Solution

    |

  12. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  13. If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc, then in (-oo,oo)

    Text Solution

    |

  14. If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gt...

    Text Solution

    |

  15. The length of a longest interval in which the function 3sinx-4sin^(3...

    Text Solution

    |

  16. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  17. The maximum value of (cosalpha(1))-(cos alpha(2))...(cosalpha(n)), u...

    Text Solution

    |

  18. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  19. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  20. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  21. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |