Home
Class 12
MATHS
Prove that (tan^(-1)1/e)^2+(2e)/((e^2+1)...

Prove that `(tan^(-1)1/e)^2+(2e)/((e^2+1)<(tan^(-1)e)^2+2/(sqrt(e^2+1))`

Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise EXAMPLE|6 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

If e and e' the eccentricities of a hyperbola and its conjugate,prove that (1)/(e^(2))+(1)/(e^(2))=1

Prove that int e^x (tan^-1 x+1/(1+x^2)) dx=e^x tan^-1x+c

Prove that 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x)=tan^(-1)x(x!=0)dot

If e_(1) and e_(2) are the eccentricities of the hyperbola and its conjugate hyperbola respectively then (1)/(e_(1)^(2))+(1)/(e_(2)^(2)) is equal to

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

If (a sec theta;b tan theta) and (a sec phi;b tan phi) are the ends of the focal chord of (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 then prove that tan((x)/(a))tan((phi)/(2))=(1-e)/(1+e)

If y=tan^(-1)((e^(2x)+1)/(e^(2x)-1)) , prove that : dy/dx=-(2e^(2x))/(1+e^(4x)) .

ARIHANT MATHS-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Prove that (tan^(-1)1/e)^2+(2e)/((e^2+1)<(tan^(-1)e)^2+2/(sqrt(e^2+1))

    Text Solution

    |

  2. The least value of alpha in R for which 4alphax^(2)+(1)/(x)ge1, for al...

    Text Solution

    |

  3. The number of points in (-oo,oo) for which x^(2)-xsinx-cosx=0, is

    Text Solution

    |

  4. Let f : R ->(0,oo) and g : R -> R be twice differentiable functions...

    Text Solution

    |

  5. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  6. The fuction f(x)=2|x|+|x+2|-||x+2|-2|x|} has a local minimum or a loca...

    Text Solution

    |

  7. A rectagular sheet of fixed permeter with sides having thir lengths in...

    Text Solution

    |

  8. A vertical line passing through the point (h, 0) intersects the ellips...

    Text Solution

    |

  9. Let f,g and h be real-valued functions defined on the interval [0,1] b...

    Text Solution

    |

  10. e total number of local maxima and local minima of the function f(x) =...

    Text Solution

    |

  11. If the function g:(-oo,oo)->(-pi/2,pi/2) is given by g(u)=2tan^-1(e^u)...

    Text Solution

    |

  12. The second degree polynomial f(x), satisfying f(0)=o, f(1)=1,f'(x)gt...

    Text Solution

    |

  13. If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc, then in (-oo,oo)

    Text Solution

    |

  14. If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gt...

    Text Solution

    |

  15. The length of a longest interval in which the function 3sinx-4sin^(3...

    Text Solution

    |

  16. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  17. The maximum value of (cosalpha(1))-(cos alpha(2))...(cosalpha(n)), u...

    Text Solution

    |

  18. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  19. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  20. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  21. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |