Home
Class 12
MATHS
Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex...

Let `f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):}`and `g(x)={:{(max{3//8t^(4)+1//2t^(3)-3//2t^(2)+1","0letlex}","0lexle1),(min{3//8t+1//32sin^(2)pit+5//8","1letlex}1","lexle2):}`
The function `f(x),AAx in [0,2]` is

A

`underset(xto1^(-))lim(fog)(x)gtunderset(xto1^(+))lim(gof)(x)`

B

`underset(xto1^(-))lim(fog)(x)ltunderset(xto1^(+))lim(gof)(x)`

C

`underset(xto1^(-))lim(fog)(x)=underset(xto1^(+))lim(gof)(x)`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 1|7 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise For Session 2|4 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|31 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={:{(max{t^(3)-t^(2)+t+1,0letlex}",",0lexle1),(min{3-t,1lttlex}",",1ltxle2):} The function f(x),AAx in [0,2] is

Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1ltxle2):} then

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} The graph of y=g(x) in its domain is broken at

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} For x in(-1,00),f(x)+g(x) is