Home
Class 12
MATHS
Let a, b R be such that the function f ...

Let a, b R be such that the function f given by `f(x)""=""ln""|x|""+""b x^2+""a x ,""x!=0` has extreme values at `x""=""1` and `x""=""2` . Statement 1: f has local maximum at `x""=""1` and at `x""=""2` . Statement 2: `a""=1/2"and"b=(-1)/4` (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

A

Statement I is false, Statement II is true

B

Statement I is true, Statement II is true, Statement II is a correct explanation of Statement I

C

Statement I is true, Statement II is true, Statement II is not a correct explanation of Statement I

D

Statement I is true, Statement II is false.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|11 Videos
  • MATRICES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=|x^2|+|x^5|,x in R . Statement 1: f'(4)=0 Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5). (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Let A be a 2""xx""2 matrix Statement 1 : a d j""(a d j""A)""=""A Statement 2 : |a d j""A|""=""|A| (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Let x_1,""x_2,"". . . . . . ,""x_n be n observations, and let bar x be their arithematic mean and sigma^2 be their variance. Statement 1: Variance of 2x_1,""2x_2,"". . . . . . ,""2x_n""i s""4""sigma^2 . Statement 2: Arithmetic mean of 2x_1,""2x_2,"". . . . . . ,""2x_n""i s""4x . (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Statement 1: An equation of a common tangent to the parabola y^2=16sqrt(3)x and the ellipse 2x^2+""y^2=""4""i s""y""=""2x""+""2sqrt(3) . Statement 2: If the line y""=""m x""+(4sqrt(3))/m ,(m!=0) is a common tangent to the parabola y^2=""16sqrt(3)x and the ellipse 2x^2+""y^2=""4 , then m satisfies m^4+""2m^2=""24 . (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

Statement 1: (lim)_(x->0)sin^(-1){x}\ does not exist (where {.} denotes fractional part function). Statement 2: {x} is discontinuous at x=0 (a)Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 (b)Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. (c)Statement 1 is true, statement 2 is false (d)Statement 1 is false, statement 2 is true

Let f(x)=x|x| and g(x)=s in x Statement 1 : gof is differentiable at x=0 and its derivative is continuous at that point Statement 2: gof is twice differentiable at x=0 (1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for statement 1 (2) Statement 1 is true, Statement 2 is true; Statement 2 is not a correct explanation for statement 1. (3) Statement 1 is true, statement 2 is false. (4) Statement 1 is false, Statement 2 is true

9, Let A be a 2 x 2 matrix with real entries. Let I be the 2 × 2 2identity matrix. Denote by tr (A), the sum of diagonal entries of A. Assume that A2 -1 nvo bud o malai Statement 1: If A 1 and A?-1, then det A =-1. Statement 2: If A 1 and A?-I, then tr (A)?0 A. Statement 1 is false, statement 2 is true. B. Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 . C. Statement 1 is true, statement 2 is true; statement 2 is nota correct explanation for statement 1. D. Statement 1 is true, statement 2 is false.

Statement 1: The function f(x)=[[x]]-2[x-1]+[x+2] is discontinuous at all integers. Statement 2: [x] is discontinuous at all integral values of xdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Statement 1: The value of the integral int_(pi//6)^(pi//3)(dx)/(1+sqrt(tanx)) is equal to pi/6 Statement 2: int_a^bf(x)dx=int_a^bf(a+b-x)dxdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

Statement 1: sum_(r=0)^n(r+1)^n c_r=(n+2)2^(n-1)dot Statement 2: sum_(r=0)^n(r+1)^n c_r=(1+x)^n+n x(1+x)^(n-1)dot (1) Statement 1 is false, Statement ( 2) (3)-2( 4) is true (6) Statement 1 is true, Statement ( 7) (8)-2( 9) (10) is true, Statement ( 11) (12)-2( 13) is a correct explanation for Statement 1 (15) Statement 1 is true, Statement ( 16) (17)-2( 18) (19) is true; Statement ( 20) (21)-2( 22) is not a correct explanation for Statement 1. (24) Statement 1 is true, Statement ( 25) (26)-2( 27) is false.

ARIHANT MATHS-MONOTONICITY MAXIMA AND MINIMA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If f(x)=x^(3)+bx^(2)+cx+dand 0 ltb^(2)ltc, then in (-oo,oo)

    Text Solution

    |

  2. If f(x)=x^(2)+2bx+2c^(2)and g(x)=-x^(2)-2cx+b^(2), such that minf(x)gt...

    Text Solution

    |

  3. The length of a longest interval in which the function 3sinx-4sin^(3...

    Text Solution

    |

  4. If f(x)=e^(1-x) then f(x) is

    Text Solution

    |

  5. The maximum value of (cosalpha(1))-(cos alpha(2))...(cosalpha(n)), u...

    Text Solution

    |

  6. If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt ...

    Text Solution

    |

  7. If f(x) is a cubic polynomil which as local maximum at x=-1 . If f(2)=...

    Text Solution

    |

  8. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  9. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  10. Consider the function f:(-oo, oo) -> (-oo ,oo) defined by f(x) =(x^2...

    Text Solution

    |

  11. For the circle x^(2)+y^(2)=r^(2), find the value of r for which the ar...

    Text Solution

    |

  12. Find a point on the curve x^2 + 2y^2 = 6, whose distance from the li...

    Text Solution

    |

  13. Let f:R rArr R be defined as f(x)=|x|+|x^2-1| The total number of p...

    Text Solution

    |

  14. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  15. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  16. The maximum value of the expression (1)/(sin^(2)theta+3sinthetacosthet...

    Text Solution

    |

  17. The maximum value of the function f(x)=2x^(3)-15x^(2)+36x-48 on the se...

    Text Solution

    |

  18. A wire of length 2 units is cut into two parts which are bent respecti...

    Text Solution

    |

  19. If x = -1 and x = 2 are extreme points of f(x) = alpha log|x| + beta x...

    Text Solution

    |

  20. Let a, b R be such that the function f given by f(x)""=""ln""|x|""+""...

    Text Solution

    |