Home
Class 12
MATHS
[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0)...

`[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)]` then, `C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1)` gives

A

`[(1,0,0),(3,-9,11),(-2,1,4)] =A [(-1,3,2),(0,-1,0),(0,0,-1)]`

B

`[(1,0,0),(-3,-1,-4),(2,-9,11)] =A [(1,-3,2),(0,1,0),(0,0,1)]`

C

`[(1,0,0),(-3,1,4),(-2,9,-11)] =A [(-1,3,2),(0,-1,0),(0,0,-1)]`

D

`[(1,0,0),(-3,9,-11),(2,-1,4)] =A [(1,-3,2),(0,1,0),(0,0,1)]`

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

If A=[(2,3,4),(-3,0,2)], B=[(3,-4,-5),(1,2,1)], C=[(5,-1,0),(7,0,3)], then find A+B+C.

Knowledge Check

  • Given A = [(1,2,-3),(5,0,2),(1,-1,1)] and B - [(3,-1,2),(4,2,5),(2,0,3)] . The matrix C such that A + 2C = B is

    A
    `[(1,(3)/(2),1),(-(1)/(2),(7)/(2),(3)/(2)),((1)/(2),(8)/(2),8)]`
    B
    `[((5)/(2),(3)/(2),1),(-(1)/(2),(7)/(2),(9)/(2)),((11)/(2),(9)/(2),8)]`
    C
    `[(1,2,4),((3)/(2),(11)/(2),(13)/(14)),(4,(9)/(2),(7)/(2))]`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

    Given A=[(1,2,-3),(5,0,2),(1,-1,1)] and b=[(3,-1,2),(4,2,5),(2,0,3)] , find the matrix C such that A+C=B .

    If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)] , find (i) 2B-3C (ii) A-2B+3C .

    Let c_(1)=(1,0,0),c_(2)=(1,1,0),c_(3)=(1,1,1) then the reciprocal of c_(1)=

    2C_(0)+5C_(1)+8C_(2)++(3n+2)C_(n)=(3n+4)2^(n-1)

    If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

    If C= [{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}] Then trace of C+C^(3)+C^(5)+……+C^(99) is