Home
Class 12
MATHS
If A=[(2,-3,3),(2,2,3),(3,-2,2)] then ...

If `A=[(2,-3,3),(2,2,3),(3,-2,2)] ` then
`C_(2)rarrC_(2)+2C_(1)` and then `R_(1)rarrR_(1)+R_(3)` gives

A

`[(2,1,3),(2,6,3),(3,4,2)] `

B

`[(2,-1,3),(2,4,3),(3,1,2)] `

C

`[(5,5,5),(3,4,3),(2,6,3)] `

D

`[(5,5,5),(2,6,3),(3,4,2)] `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A= [{:(1," 2",-1),(3,-2," 5"):}] , then R_(1) harr R_(2) and C_(1) rarr C_(1) + 2C_(3) given

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

If A = [[1,-1,3] , [2,1,0] , [3,3,1]] then apply R_1 rarr R_2 and then C_1 rarr C_1 +2C_3 on A

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

If A=[[1, 2, -1], [3, -2, 5]] , then first R_1 harr R_2 and then C_1 to C_1+2C_3 on A gives

show that r_(2)r_(3) +r_(3) r_(1)+ r _(1) r_(2)=s^(2)

Show that (r_(1)+ r _(2))(r _(2)+ r _(3)) (r_(3)+r_(1))=4Rs^(2)

Three circles with centres C_(1),C_(2) and C_(3) and radii r_(1),r_(2) and r_(3) where *r_(-)1

Let A={1,2,3}, and let R_(1)={(1,1),(1,3),(1,1),(2,1),(2,1),(2,3)}R_(-)2={(2,2),3,1),(1,3)},R_(-)3={(1,3),(3,3)} Find whether or not each of the relations R_(1),R_(2),R_(3) on A is reflexive (ii) symmetric (iii) transitive.

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. [(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C(2) ...

    Text Solution

    |

  2. If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C(2)rarrC(2)+2C(1) and then ...

    Text Solution

    |

  3. If A=[(1,2,1),(3,2,3),(2,1,2)] , then a(11) A(11)+a(21) A(21)+a(31) A(...

    Text Solution

    |

  4. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  5. If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , then adj (AB) is equal to

    Text Solution

    |

  6. If A={:[(4,2),(3,4)],:}" then: "|adj.A|=

    Text Solution

    |

  7. If A=[(1,2,3),(1,4,9),(1,8,27)], then | adj A| is equal to

    Text Solution

    |

  8. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  9. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  10. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  11. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  12. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  13. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  14. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  15. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  16. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  17. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  18. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  19. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  20. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |