Home
Class 12
MATHS
If A=[(1,2,1),(3,2,3),(2,1,2)] , then a(...

If `A=[(1,2,1),(3,2,3),(2,1,2)]` , then `a_(11) A_(11)+a_(21) A_(21)+a_(31) A_(31)=`

A

1

B

2

C

|A|

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \( a_{11} A_{11} + a_{21} A_{21} + a_{31} A_{31} \) for the matrix \( A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix} \). ### Step 1: Identify the elements \( a_{11}, a_{21}, a_{31} \) From the matrix \( A \): - \( a_{11} = 1 \) (element in the first row, first column) - \( a_{21} = 3 \) (element in the second row, first column) - \( a_{31} = 2 \) (element in the third row, first column) ### Step 2: Calculate \( A_{11} \) The minor \( A_{11} \) is obtained by deleting the first row and first column of matrix \( A \): \[ A_{11} = \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2) - (3 \cdot 1) = 4 - 3 = 1 \] ### Step 3: Calculate \( A_{21} \) The minor \( A_{21} \) is obtained by deleting the second row and first column of matrix \( A \): \[ A_{21} = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2) - (1 \cdot 1) = 4 - 1 = 3 \] ### Step 4: Calculate \( A_{31} \) The minor \( A_{31} \) is obtained by deleting the third row and first column of matrix \( A \): \[ A_{31} = \begin{vmatrix} 2 & 1 \\ 2 & 3 \end{vmatrix} = (2 \cdot 3) - (1 \cdot 2) = 6 - 2 = 4 \] ### Step 5: Compute the expression Now, we substitute the values we found into the expression \( a_{11} A_{11} + a_{21} A_{21} + a_{31} A_{31} \): \[ = 1 \cdot 1 + 3 \cdot 3 + 2 \cdot 4 \] \[ = 1 + 9 + 8 \] \[ = 18 \] ### Final Answer Thus, the value of \( a_{11} A_{11} + a_{21} A_{21} + a_{31} A_{31} \) is \( 18 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

IF A=[(1,1,0),(2,1,5),(1,2,1)], then a_(11) A_(21) +a_(12)A_(22)+a_(13)A_(23) =

If A=[(1,1,0),(2,1,5),(1,2,1)] then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23) is equal to

Matrix A =[(1,2,3),(1,1,5),(2,4,7)] then the value of A_(31) A_(31) +a_(32) A_(32) +a_(33)A_(33) is

Matrix A=[(1,2,3),(1,1,5),(2,4,7)] , then the value of a_(31)A_(31)+a_(32)A_(32)+a_(33)A_(33) is

If Delta=|[a_(11),a_(12),a_(13)],[a_(21),a_(22),a_(23)],[a_(31),a_(32),a_(33)]| and A_(i j) is cofactors of a_(i j) , then value of Delta is given by A. a_(11)A_(31)+a_(12)A_(32)+a_(13)A_(33) B. a_(11)A_(11)+a_(12)A_(21)+a_(13)A_(31) C. a_(21)A_(11) + a_(22)A_(12) + a_(23)A_(13) D. a_(11)A_(11) + a_(21)A_(21) + a_(31)A_(31)

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and A_(ij) denote the cofactor of element a_(ij) , then a_(11)A_(21)+a_(12)A_(22)+a_(13)A_(23)=

If A=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]] and a_(ij) denote the cofactor of element A_(ij) , then a_(11)A_(11)+a_(12)A_(12)+a_(13)A_(13)=

If A=[[3,4,5],[1,6,7],[2,8,3]] ,then the value of a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) is equal to

If matrix A=[[1, 0, -1], [3, 4, 5], [0, 6, 7]] and its inverse is denoted by A^(-1)=[[a_(11), a_(12), a_(13)], [a_(21), a_(22), a_(23)], [a_(31), a_(32), a_(33)]], then the value of a_(23) =

If A=[(a_(11),a_(12)),(a_(21),a_(22))] , then minor of a_(11) (i. e., M_(11)) is

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. [(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C(2) ...

    Text Solution

    |

  2. If A=[(2,-3,3),(2,2,3),(3,-2,2)] then C(2)rarrC(2)+2C(1) and then ...

    Text Solution

    |

  3. If A=[(1,2,1),(3,2,3),(2,1,2)] , then a(11) A(11)+a(21) A(21)+a(31) A(...

    Text Solution

    |

  4. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  5. If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , then adj (AB) is equal to

    Text Solution

    |

  6. If A={:[(4,2),(3,4)],:}" then: "|adj.A|=

    Text Solution

    |

  7. If A=[(1,2,3),(1,4,9),(1,8,27)], then | adj A| is equal to

    Text Solution

    |

  8. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  9. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  10. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  11. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  12. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  13. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  14. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  15. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  16. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  17. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  18. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  19. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  20. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |