Home
Class 12
MATHS
If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , th...

If `A=[(3,2),(7,5)], B=[(6,7),(8,9)]` , then adj (AB) is equal to

A

`[(94,-39),(-82,34)]`

B

`[(94,-39),(82,-34)]`

C

`[(94,-82),(-39,34)]`

D

`[(-94,-39),(82,34)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the product of two matrices \( A \) and \( B \), we will follow these steps: ### Step 1: Calculate the product \( AB \) Given: \[ A = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & 7 \\ 8 & 9 \end{pmatrix} \] To find \( AB \), we use the formula for matrix multiplication: \[ AB = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \] Calculating each element: - First row, first column: \[ 3 \cdot 6 + 2 \cdot 8 = 18 + 16 = 34 \] - First row, second column: \[ 3 \cdot 7 + 2 \cdot 9 = 21 + 18 = 39 \] - Second row, first column: \[ 7 \cdot 6 + 5 \cdot 8 = 42 + 40 = 82 \] - Second row, second column: \[ 7 \cdot 7 + 5 \cdot 9 = 49 + 45 = 94 \] Thus, we have: \[ AB = \begin{pmatrix} 34 & 39 \\ 82 & 94 \end{pmatrix} \] ### Step 2: Find the adjoint of \( AB \) For a \( 2 \times 2 \) matrix: \[ \text{If } M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \text{ then } \text{adj}(M) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying this to our matrix \( AB \): \[ AB = \begin{pmatrix} 34 & 39 \\ 82 & 94 \end{pmatrix} \] We swap \( a \) and \( d \) (34 and 94), and change the signs of \( b \) and \( c \) (39 and 82): \[ \text{adj}(AB) = \begin{pmatrix} 94 & -39 \\ -82 & 34 \end{pmatrix} \] ### Final Answer: \[ \text{adj}(AB) = \begin{pmatrix} 94 & -39 \\ -82 & 34 \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of each of the matrices given below : If A=[(3,2),(7,5)] and B=[(6,7),(8,9)], " verify that " (AB)^(-1)= B^(-1) A^(-1) .

For matrix A=[(2,5),(-11,7)] (adj A)' is equal to :

If A=[[-2,6],[-5,7]] , then adj A =

If A = { 5,6,7 } and B = { 7, 8, 9 } , then A uu B is equal to :

If A={1,4, 7,8}, B={4,6,8,9} and C={3,4,5, 7} be three subsets of a universal set U ={1,2, 3, 4,5, 6, 7,8, 9} . Then, A uu (Bnn C') is equal to

If A={5,6,7} and B={7,8,9} then A uu B is equal to a) {5,6,7,8,9} b) {5,6,7} c) {7,8,9} d) None of these

If A = {1,2,3,4,5,6,7} and B = {7,8,9,10} , then A-B equals :

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. If A=[(1,2,1),(3,2,3),(2,1,2)] , then a(11) A(11)+a(21) A(21)+a(31) A(...

    Text Solution

    |

  2. Adjoint of the matrix N=[[-4, -3, -3], [1, 0, 1], [4, 4, 3]] is

    Text Solution

    |

  3. If A=[(3,2),(7,5)], B=[(6,7),(8,9)] , then adj (AB) is equal to

    Text Solution

    |

  4. If A={:[(4,2),(3,4)],:}" then: "|adj.A|=

    Text Solution

    |

  5. If A=[(1,2,3),(1,4,9),(1,8,27)], then | adj A| is equal to

    Text Solution

    |

  6. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  7. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  8. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  9. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  10. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  11. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  12. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  13. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  14. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  15. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  16. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  17. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  18. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |

  19. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  20. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |