Home
Class 12
MATHS
For a invertible matrix A if A (ad...

For a invertible matrix `A ` if ` A (adj A) =[(10,0),(0,10)]` then `|A|=`

A

0

B

10

C

20

D

100

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

For a invertible matrix A if A(adjA)=[(10,0),(0,10)] , then |A|=

For a invertible matrix A, if A(adjA)=[[10, 0], [0, 10]] , then |A|=

For a square matrix of order 2, if A (adj A)= [{:(8,0),(0,8):}], then |2A|=

For any square matrix of order 2, if A (adj A) = [{:(8, 0),( 0,8):}], then the value of |A| is :

Select and write the most appropriate answer from the given alternatives in each of the following : If A is a matrix such that A (adj A) ={:((20,0),(0,20)):} , then |A| = ……

If matrix A=[(0,-1),(1,0)] , then A^16 =

If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to

For any 2xx2 matrix, if A\ (a d j\ A)=[10 0 0 10] , then |A| is equal to (a) 20 (b) 100 (c) 10 (d) 0

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. If A={:[(4,2),(3,4)],:}" then: "|adj.A|=

    Text Solution

    |

  2. If A=[(1,2,3),(1,4,9),(1,8,27)], then | adj A| is equal to

    Text Solution

    |

  3. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  4. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  5. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  6. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  7. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  8. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  9. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  10. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  11. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  12. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  13. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  14. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  15. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |

  16. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  17. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  18. Show that A=[(5,3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, ...

    Text Solution

    |

  19. If [(x,1),(1,0)] and A^(2)=I, then A^(-1) is equal to

    Text Solution

    |

  20. If A and B are square matrices of the same order and AB=3I then A^(-1)...

    Text Solution

    |