Home
Class 12
MATHS
if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=...

`if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?`

A

`[(7,5),(-11,-8)]`

B

`[(2,1),(5,3)]`

C

`[(7,1),(34,5)]`

D

`[(5,3),(13,8)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If [(2,1),(7,4)]A[(-3,2),(5,-3)]=[(1,0),(0,1)] then matrix A equals

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

Verify that A(B+C)=(AB+AC), when (i) A=[{:(1,2),(3,4):}],B=[{:(2," "0),(1,-3):}]" and "C=[{:(1,-1),(0," "1):}]. (ii) A=[{:(2,3),(-1,4),(0,1):}],B=[{:(5,-3),(2," "1):}]" and "C=[{:(-1,2),(" "3,4):}].

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then"

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

If A=[{:(" "1,-1," "2),(" "3," "2," "0),(-2," "0," "1):}],B=[{:(3,1),(0,2),(-2,5):}]" and "C=[{:(2,1,-3),(3,0,-1):} then verify that (AB)C=A(BC).

show that (i) [{:(5,-1),(6,7):}][{:(2,3),(3,4):}]ne[{:(2,3),(3,4):}][{:(5,-1),(6,7):}] (ii) [{:(1,2,3),(0,1,0),(1,1,0):}][{:(-1,1,0),(0,-1,1),(2,3,4):}] ne[{:(-1,1,0),(0,-1,1),(2,3,4):}][{:(1,2,3),(0,1,0),(1,1,0):}]

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  2. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  3. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  4. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  5. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  6. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  7. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  8. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  9. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  10. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  11. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  12. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |

  13. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  14. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  15. Show that A=[(5,3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, ...

    Text Solution

    |

  16. If [(x,1),(1,0)] and A^(2)=I, then A^(-1) is equal to

    Text Solution

    |

  17. If A and B are square matrices of the same order and AB=3I then A^(-1)...

    Text Solution

    |

  18. A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1)=

    Text Solution

    |

  19. If A is a square matrix such that |A| ne 0 and m, n (ne 0) are scalars...

    Text Solution

    |

  20. If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0, then A^(-1) equals

    Text Solution

    |