Home
Class 12
MATHS
If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2...

If `P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]`then `(PQ)^(-1)` equals to

A

zero matrix

B

`I_(3)`

C

diag `[-5, -5, -5]`

D

`-(1)/(5)I_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \((PQ)^{-1}\) for the matrices \(P\) and \(Q\) given as: \[ P = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & -2 & -3 \\ -3 & 1 & 9 \\ 0 & 0 & -5 \end{pmatrix} \] we will follow these steps: ### Step 1: Calculate the product \(PQ\) To find \(PQ\), we will multiply matrix \(P\) by matrix \(Q\). \[ PQ = P \cdot Q = \begin{pmatrix} 1 & 2 & 4 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 & -3 \\ -3 & 1 & 9 \\ 0 & 0 & -5 \end{pmatrix} \] Calculating each element: - First row: - First column: \(1 \cdot 1 + 2 \cdot (-3) + 4 \cdot 0 = 1 - 6 + 0 = -5\) - Second column: \(1 \cdot (-2) + 2 \cdot 1 + 4 \cdot 0 = -2 + 2 + 0 = 0\) - Third column: \(1 \cdot (-3) + 2 \cdot 9 + 4 \cdot (-5) = -3 + 18 - 20 = -5\) - Second row: - First column: \(3 \cdot 1 + 1 \cdot (-3) + 0 \cdot 0 = 3 - 3 + 0 = 0\) - Second column: \(3 \cdot (-2) + 1 \cdot 1 + 0 \cdot 0 = -6 + 1 + 0 = -5\) - Third column: \(3 \cdot (-3) + 1 \cdot 9 + 0 \cdot (-5) = -9 + 9 + 0 = 0\) - Third row: - First column: \(0 \cdot 1 + 0 \cdot (-3) + 1 \cdot 0 = 0 + 0 + 0 = 0\) - Second column: \(0 \cdot (-2) + 0 \cdot 1 + 1 \cdot 0 = 0 + 0 + 0 = 0\) - Third column: \(0 \cdot (-3) + 0 \cdot 9 + 1 \cdot (-5) = 0 + 0 - 5 = -5\) Thus, we have: \[ PQ = \begin{pmatrix} -5 & 0 & -5 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{pmatrix} \] ### Step 2: Calculate the determinant of \(PQ\) The determinant of a \(3 \times 3\) matrix \(A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}\) is given by: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \(PQ\): \[ \text{det}(PQ) = -5 \left((-5)(-5) - (0)(0)\right) - 0 + (-5)\left(0 - 0\right) \] \[ = -5(25) = -125 \] ### Step 3: Calculate the adjoint of \(PQ\) The adjoint of a matrix is the transpose of its cofactor matrix. For our \(PQ\) matrix: \[ \text{Cofactor}(PQ) = \begin{pmatrix} (-5)(-5) & 0 & -(-5)(0) \\ 0 & -5(-5) & 0 \\ 0 & 0 & (-5)(-5) \end{pmatrix} = \begin{pmatrix} 25 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \end{pmatrix} \] Taking the transpose gives us: \[ \text{adj}(PQ) = \begin{pmatrix} 25 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \end{pmatrix} \] ### Step 4: Calculate \((PQ)^{-1}\) Now we can find \((PQ)^{-1}\): \[ (PQ)^{-1} = \frac{1}{\text{det}(PQ)} \cdot \text{adj}(PQ) = \frac{1}{-125} \cdot \begin{pmatrix} 25 & 0 & 0 \\ 0 & 25 & 0 \\ 0 & 0 & 25 \end{pmatrix} \] This simplifies to: \[ (PQ)^{-1} = \begin{pmatrix} \frac{25}{-125} & 0 & 0 \\ 0 & \frac{25}{-125} & 0 \\ 0 & 0 & \frac{25}{-125} \end{pmatrix} = \begin{pmatrix} -\frac{1}{5} & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & -\frac{1}{5} \end{pmatrix} \] ### Final Answer: \[ (PQ)^{-1} = -\frac{1}{5} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = -\frac{1}{5} I \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CLASSICAL THINKING (MISCELLANEOUS)|2 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If P =[(3,4),(-1,2),(0,1)] and Q = [(-1, 2,1),(1,2,3)] , then (P^(T) + Q)=

If P=[(0,1,0),(0,2,1),(2,3,0)],Q=[(1,2),(3,0),(4,1)] , find PQ.

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If A=|{:(1,0,0),(0,1,0),(0,0,1):}|" and A"=[{:(0,-3,4),(1,2,3),(0,5,5):}]," then find "(I-A)^(-1)

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives

TARGET PUBLICATION-MATRICES-CRITICAL THINKING ( 2. 1 Elementary Transformations)
  1. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  2. If A is a singular matrix of order n, then A(adjA)=

    Text Solution

    |

  3. If A=[(a,b),(c,d)], then adj(adjA) is equal to

    Text Solution

    |

  4. Using elementary transformations, find the inverse of the matrix : ...

    Text Solution

    |

  5. The inverse of the matrix A[(1,1,1),(6,7,8),(6,7,-8)] using adjoint me...

    Text Solution

    |

  6. If D=diag [2, 3, 4], then D^(-1)=

    Text Solution

    |

  7. The matrix A satisfying A[[1, 5], [0, 1]]=[[3, -1], [6, 0]] is

    Text Solution

    |

  8. If product of matrix A with [(1,1),(2,0)] is [(3,2),(1,1)] then A^(-1)...

    Text Solution

    |

  9. If product of matrix A with [(0,1),(2,-4)] is [(3,2),(1,1)] , then A^(...

    Text Solution

    |

  10. if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?

    Text Solution

    |

  11. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  12. If P=[(1,2,4),(3,1,0),(0,0,1)], Q=[(1,-2,-3),(-3,1,9),(0,0,-5)]then (P...

    Text Solution

    |

  13. If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

    Text Solution

    |

  14. If matrix [(1,2,-1),(3,4,5),(2,6,7)] and its inverse is denoted by A^(...

    Text Solution

    |

  15. Show that A=[(5,3),(-1,-2)] satisfies the equation x^2-3x-7=0 . Thus, ...

    Text Solution

    |

  16. If [(x,1),(1,0)] and A^(2)=I, then A^(-1) is equal to

    Text Solution

    |

  17. If A and B are square matrices of the same order and AB=3I then A^(-1)...

    Text Solution

    |

  18. A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1)=

    Text Solution

    |

  19. If A is a square matrix such that |A| ne 0 and m, n (ne 0) are scalars...

    Text Solution

    |

  20. If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0, then A^(-1) equals

    Text Solution

    |