Home
Class 12
MATHS
If n ne 3k and 1 , omega , omega ^(2) ar...

If `n ne 3k and 1 , omega , omega ^(2)` are the cube roots of units , then `Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)|` has the value

A

0

B

`omega`

C

`omega^(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING (Inverse off a matrix )|69 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING ( 2. 1 Elementary Transformations)|28 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,omega^n , omega^(2n)),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If 1,omega,omega^2 are the cube roots of unity , then Delta=|(1,omega^n, omega^2n),(omega^n , omega^(2n), 1),(omega^(2n), 1, omega^n)| is equal to :

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

If 1,omega,omega^(2) are the cube roots of unity (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5))....... to 2n factors