Home
Class 12
MATHS
Let D, E and F be the middle points of t...

Let D, E and F be the middle points of the sides BC,CA and AB respectively of a triangle ABC. Then, AD + BE + CF equals to

A

0

B

0

C

2

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

Let the position vectors A, B, C be a, b and c respectively . Then the position vectors of mid-points D, E and F are
` (b+c)/(2)` ,(c+a)/( 2) and (a+b) /(2)` repectively .
Now `AD +BE +CF`
`={(b+c)/(2)-a}+{(c+a)/(2)-b}+{(a+b)/(2)-c )}=0`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise (VECTORS ) Exercise 2 ( Topical problems )|88 Videos
  • VECTORS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise ( MHT CET Corner)|66 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (MISCELLANEOUS PROBLEMS)|20 Videos

Similar Questions

Explore conceptually related problems

Let D, E and F be the middle points of the sides BC,CA and AB, respectively of a triangle ABC. Then prove that vec AD+vec BE+vec CF=vec 0

If D,E and F be the middle points of the sides BC,CA and AB of the Delta ABC, then AD+BE+CF is

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

Let vec a,vec b,vec c form sides BC,CA and AB respectively of a triangle ABC then

Let D(3, -2), E(-3, 1) and F(4, -3) be the midpoints of the sides BC, CA and AB respectively of Delta ABC . Then, find the coordinates the vertices A, B and C.

If D,E,F are the mid points of the side BC,CA and AB respectively of a triangle ABC,write the value of vec AD+vec BE+vec CF

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-VECTORS -( MHT CET Corner)
  1. Let D, E and F be the middle points of the sides BC,CA and AB respecti...

    Text Solution

    |

  2. If a=hat(i)+hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=3hat(i)-hat(...

    Text Solution

    |

  3. If M and N are the mid-points of the diagonals AC and BD respectively ...

    Text Solution

    |

  4. If G(barg), H(barh) and P(barp) are centroid, orthocenter and circumce...

    Text Solution

    |

  5. If a=hat(i)+hat(j)+hat(k), b=2hat(i)+lambda hat(j)+hat(k), c=hat(i)-ha...

    Text Solution

    |

  6. If the position vectors of the vertices A, B and C are 6i, 6j ...

    Text Solution

    |

  7. If three vectors 2hat(i)-hat(j)-hat(k), hat(i)+2hat(j)-3hat(k) and 3ha...

    Text Solution

    |

  8. Find a vector of magnitude 9, which is perpendicular to both vectors 4...

    Text Solution

    |

  9. If in a Delta ABC, O and O' are the incentre and orthocentre respectiv...

    Text Solution

    |

  10. If a+b+c=0 and |a|=5, |b|=3 and |c|=7, then angle between a and b is

    Text Solution

    |

  11. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |

  12. If a, b, c are linearly independent vectors and delta =|(a,b,c),(a.a,a...

    Text Solution

    |

  13. If veca,vecb,vecc are three non- coplanar vectors and vecp,vecq,vecr a...

    Text Solution

    |

  14. The volume of a parallelopiped whose coterminous edges are 2veca , 2ve...

    Text Solution

    |

  15. The position vectors of vertices of a Delta ABC are 4hat(i)-2hat(j), h...

    Text Solution

    |

  16. Given p=3hat(i)+2hat(j)+4hat(k), a=hat(i)+hat(j), b=hat(j)+hat(k), c=h...

    Text Solution

    |

  17. Volume of the parallelopiped having vertices at O-=(0,0,0) , A-=(2,-2...

    Text Solution

    |

  18. If 2veca+ 3vecb-5 vecc=vec0, then ratio in which vecc divides vec...

    Text Solution

    |

  19. If the constant forces 2hati-5hatj+6hatk and -hati+2hatj-hatk act on a...

    Text Solution

    |

  20. If the vectors hat(i)-3hat(j)+2hat(k), -hat(i)+2hat(j) represent the d...

    Text Solution

    |

  21. If |vec(a)|=2,|vec(b)|=3andvec(a),vec(b) are mutually perpendicular, t...

    Text Solution

    |