Home
Class 11
PHYSICS
A body is displaced from vec r(A) =(2hat...

A body is displaced from `vec r_(A) =(2hat i + 4hatj -6hat k)` to `vecr_(B) = (6hat i -4hat j +3 hat k)` under a constant force `vec F = (2 hat i + 3 hat j - hat k)`. Find the work done.

Text Solution

Verified by Experts

Work done `W = vec F. vec S, W = vec F.(vec r_(B)-vec r_(A))`
`W = (2 hat i+3 hat j - hat k).[(6 hati - 4 hat j + 2 hat k)-(2 hat i + 4 hat j - 6 hat k)]`
`W = (2 hat I + 3 hat j - hat k).(4 hat I - 8 hat j + 8 hat k)`
`W = 8 - 24 -8 = -24 units`.
Promotional Banner

Topper's Solved these Questions

  • WORK POWER AND ENERGY

    NARAYNA|Exercise C.U.Q-Key|75 Videos
  • WORK POWER AND ENERGY

    NARAYNA|Exercise Level- I (C.W)|60 Videos
  • WORK , ENERGY & POWER

    NARAYNA|Exercise EXERCISE IV|43 Videos

Similar Questions

Explore conceptually related problems

If vec A =4 hat I + 6 hat j -3 hat k and vec B =- 2 hat I -5 hat j + 7 hat k , find the angle between vec A and vec B .

If vec F =2 hat i + 3hat j +4hat k acts on a body and displaces it by vec S =3 hat i + 2hat j + 5 hat k , then the work done by the force is

A particle is displaced from position vec(r )_(1) = (3hat(i) + 2hat(j) + 6hat(k)) to another position vec(r )_(2)= (14hat(i) + 13hat(j) + 9hat(k)) under the impact of a force 5 hat(i)N . The work done will be given by

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

underset with a = 2hat i + hat j-3hat k, vec b = -hat i + hat j + 2hat k, vec c = 4hat i + 3hat k

The lines vec r=(hat i+hat j+hat k)alpha+3hat k and vec r=(hat i-2hat j+hat k)beta+3hat k

If vec a=4hat i+3hat j+hat k and vec b=hat i-2hat k, then find |2hat bxvec a|

If vec a= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k a n d vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec cdot