Home
Class 11
PHYSICS
Two bodies of masses m(1) and m(2) are m...

Two bodies of masses `m_(1)` and `m_(2)` are moving with velocities `1 ms^(-1)` and `3ms^(-1)` respectively in opposite directions. If the bodies undergo one dimensional elastic collision, the body of mass `m_(1)` comes to rest. Find the ration of `m_(1)` and `m_(2)`.

Text Solution

Verified by Experts

`u_(1) 1m//s, u_(2) = -3m//s,v_(1) = 0`
`v_(1) =((m_(1)-m_(2))/(m_(1)+m_(2)))u_(1) +((2m_(2))/(m_(1)+m_(2)))u_(2)`
`0 =((m_(1) -m_(2))/(m_(1)+m_(2)))1+ ((2m_(2))/(m_(1)+m_(2))) (-3)`
`m_(1)-m_(2)=6m_(2) ,m_(1) =7m_(2), (m_(1))/(m_(2)) = (7)/(1)`.
Promotional Banner

Topper's Solved these Questions

  • WORK POWER AND ENERGY

    NARAYNA|Exercise C.U.Q-Key|75 Videos
  • WORK POWER AND ENERGY

    NARAYNA|Exercise Level- I (C.W)|60 Videos
  • WORK , ENERGY & POWER

    NARAYNA|Exercise EXERCISE IV|43 Videos

Similar Questions

Explore conceptually related problems

Two bodies P and Q of masses m_(1) and m_(2) (m_(2) gt m_(1)) are moving with velocity v_(1) and v_(2) force exerted by P on Q during the collision is

Two bodies of masses 5 kg and 3 kg moving in the same direction along the same straingh line with velocities 5 ms^(-1) and 3 ms^(-1) respectively suffer one-dimensional elastic collision . Find their velocities after the collision .

Two particles of masses m_(1) and m_(2) and velocities u_(1) and alphau_(1)(alpha!=0) make an elastic head on collision. If the initial kinetic energies of the two particles are equal and m_(1) comes to rest after collision, then

A body of mass 2 kg moving with a velocity 3 m//s collides with a body of mass 1 kg moving with a velocity of 4 m//s in opposite direction. If the collision is head on and completely inelastic, then

A body of mass 2 kg moving with a velocity 3 m//sec collides with a body of mass 1 kg moving with a velocity of 4 m//sec in opposite direction. If the collision is head-on perfect inelastic, then

Two bodies of masses m_(1) and m_(2) are separated by a distance R. The distance of the centre of mass of the bodies from the mass m_(1) is

Two spherical bodies of mass m_(1) and m_(2) fall freely through a distance h . before the body m_(2) collides with the ground. If the coefficient of restitution of all collisions is e , find the velocity of m_(1) just after it collides with m_(2)