Home
Class 12
MATHS
If f (x) =2+ |x| -|x-1|-|x+1|, then f '(...

If `f (x) =2+ |x| -|x-1|-|x+1|,` then `f '((1)/(2)) +f' ((3)/(2))+f' ((5)/(2))` is equal to:

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of the derivative \( f'(x) \) at specific points and then sum them up. The function given is: \[ f(x) = 2 + |x| - |x-1| - |x+1| \] ### Step 1: Determine the intervals based on the absolute values The absolute value functions change their behavior at certain points. The critical points for \( |x| \), \( |x-1| \), and \( |x+1| \) are \( -1 \), \( 0 \), and \( 1 \). We will analyze the function in the following intervals: - \( (-\infty, -1) \) - \( [-1, 0) \) - \( [0, 1) \) - \( [1, \infty) \) ### Step 2: Evaluate \( f(x) \) in each interval 1. **Interval \( (-\infty, -1) \)**: - Here, \( |x| = -x \), \( |x-1| = -(x-1) = -x + 1 \), \( |x+1| = -(x+1) = -x - 1 \) - Thus, \[ f(x) = 2 - x - (-x + 1) - (-x - 1) = 2 - x + x - 1 + x + 1 = 2 \] - Therefore, \( f'(x) = 0 \). 2. **Interval \( [-1, 0) \)**: - Here, \( |x| = -x \), \( |x-1| = -(x-1) = -x + 1 \), \( |x+1| = x + 1 \) - Thus, \[ f(x) = 2 - x - (-x + 1) - (x + 1) = 2 - x + x - 1 - x - 1 = 0 \] - Therefore, \( f'(x) = 0 \). 3. **Interval \( [0, 1) \)**: - Here, \( |x| = x \), \( |x-1| = -(x-1) = -x + 1 \), \( |x+1| = x + 1 \) - Thus, \[ f(x) = 2 + x - (-x + 1) - (x + 1) = 2 + x + x - 1 - x - 1 = x \] - Therefore, \( f'(x) = 1 \). 4. **Interval \( [1, \infty) \)**: - Here, \( |x| = x \), \( |x-1| = x - 1 \), \( |x+1| = x + 1 \) - Thus, \[ f(x) = 2 + x - (x - 1) - (x + 1) = 2 + x - x + 1 - x - 1 = 2 - x \] - Therefore, \( f'(x) = -1 \). ### Step 3: Calculate \( f' \) at the required points Now we calculate \( f' \) at the points \( \frac{1}{2} \), \( \frac{3}{2} \), and \( \frac{5}{2} \): - \( f'\left(\frac{1}{2}\right) \): Since \( \frac{1}{2} \) is in the interval \( [0, 1) \), we have \( f'\left(\frac{1}{2}\right) = 1 \). - \( f'\left(\frac{3}{2}\right) \): Since \( \frac{3}{2} \) is in the interval \( [1, \infty) \), we have \( f'\left(\frac{3}{2}\right) = -1 \). - \( f'\left(\frac{5}{2}\right) \): Since \( \frac{5}{2} \) is also in the interval \( [1, \infty) \), we have \( f'\left(\frac{5}{2}\right) = -1 \). ### Step 4: Sum the derivatives Now we sum these values: \[ f'\left(\frac{1}{2}\right) + f'\left(\frac{3}{2}\right) + f'\left(\frac{5}{2}\right) = 1 + (-1) + (-1) = 1 - 1 - 1 = -1 \] ### Final Answer Thus, the final result is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If 2f (x +1) +f ((1)/( x +1))=2x, then f(2) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x+3)=x^(2)-1, then f(x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

(2) If f(x)=x+(1)/(x) , then [f(x)]^(3)-f(x^(3)) is equal to

If f(x) = log ((1+x)/(1-x)) , then f((2x)/(1+x^(2))) is equal to

If f(x) = | x | + [ x ] , then f( -3/2 ) + f( 3/2 ) is equal to : ( a ) 1 ( b ) -1/2 ( c ) 2 ( d ) 1/2

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) =2+ |x| -|x-1|-|x+1|, then f '((1)/(2)) +f' ((3)/(2))+f' ((5)...

    Text Solution

    |

  2. Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  21. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |