Home
Class 12
MATHS
Let f(x)= {{:((x)/(1+|x|)",", |x| ge1),...

Let `f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},` then domain of `f'(x)` is:

A

`(-oo,oo)`

B

`(-oo,oo)-{-1,0,1}`

C

`(-oo,oo)-{-1,1}`

D

`(-oo,oo) -{0}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of \( f'(x) \) for the given piecewise function \[ f(x) = \begin{cases} \frac{x}{1 + |x|} & \text{if } |x| \geq 1 \\ \frac{x}{1 - |x|} & \text{if } |x| < 1 \end{cases} \] we will follow these steps: ### Step 1: Identify the intervals for \( f(x) \) The function \( f(x) \) is defined in two cases based on the value of \( |x| \): 1. For \( |x| \geq 1 \): This means \( x \leq -1 \) or \( x \geq 1 \). 2. For \( |x| < 1 \): This means \( -1 < x < 1 \). ### Step 2: Write \( f(x) \) without absolute values Now, we can express \( f(x) \) without absolute values: - For \( x \leq -1 \): \[ f(x) = \frac{x}{1 + (-x)} = \frac{x}{1 - x} \] - For \( x \geq 1 \): \[ f(x) = \frac{x}{1 + x} \] - For \( -1 < x < 1 \): \[ f(x) = \frac{x}{1 - x} \] ### Step 3: Differentiate \( f(x) \) Next, we differentiate \( f(x) \) in each of the intervals: 1. For \( x \leq -1 \): \[ f'(x) = \frac{(1)(1-x) - x(-1)}{(1-x)^2} = \frac{1 - x + x}{(1-x)^2} = \frac{1}{(1-x)^2} \] 2. For \( -1 < x < 1 \): \[ f'(x) = \frac{(1)(1-x) - x(-1)}{(1-x)^2} = \frac{1 - x + x}{(1-x)^2} = \frac{1}{(1-x)^2} \] 3. For \( x \geq 1 \): \[ f'(x) = \frac{(1)(1+x) - x(1)}{(1+x)^2} = \frac{1 + x - x}{(1+x)^2} = \frac{1}{(1+x)^2} \] ### Step 4: Determine the domain of \( f'(x) \) The function \( f'(x) \) is defined as long as the denominators are not zero. - For \( x \leq -1 \): The expression \( (1 - x)^2 \) is never zero for \( x \leq -1 \). - For \( -1 < x < 1 \): The expression \( (1 - x)^2 \) is never zero for \( -1 < x < 1 \). - For \( x \geq 1 \): The expression \( (1 + x)^2 \) is never zero for \( x \geq 1 \). However, we need to check the points where the original function \( f(x) \) is not defined, specifically at \( x = -1 \) and \( x = 1 \): - At \( x = -1 \): \( f(-1) \) is defined, but \( f'(-1) \) leads to a division by zero. - At \( x = 1 \): \( f(1) \) is defined, but \( f'(1) \) leads to a division by zero. ### Conclusion Thus, the domain of \( f'(x) \) is all real numbers except \( -1 \) and \( 1 \): \[ \text{Domain of } f'(x) = (-\infty, -1) \cup (-1, 1) \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,(x)/(1+|x|),|x|ge 1),(,(x)/(1-|x|),|x| lt 1):} then f(x) is

Let f(x)={(tan^(-1)x, , |x|ge1),((x^(2)-1)/4, , |x|lt1):} then domain of f'(x) is

Let f(x)={{:(,(1)/(|x|),"for "|x| gt1),(,ax^(2)+b,"for "|x| lt 1):} If f(x) is continuous and differentiable at any point, then

f(x) {{:(x + 1"," if x ge 1 ),(x^(2)+ 1"," if x lt 1):}

The function f(x)={{:(|x-3|",", x ge1),(((x^(2))/(4))-((3x)/(2))+(13)/(4)",", x lt 1):} is

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x)= {{:((x)/(1+|x|)",", |x| ge1), ((x)/(1-|x|)",", |x| lt 1):},...

    Text Solution

    |

  2. Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  21. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |