Home
Class 12
MATHS
If the function f (x)=-4e^((1-x)/(2))+1...

If the function `f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x),` then the value of `g'((-7)/(6))` equals :

A

`1/5`

B

`-1/5`

C

`6/7`

D

`-6/7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( g'(-\frac{7}{6}) \) where \( g(x) = f^{-1}(x) \) and \( f(x) = -4e^{\frac{1-x}{2}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3} \), we can follow these steps: ### Step 1: Understand the relationship between \( f \) and \( g \) Since \( g(x) = f^{-1}(x) \), we know that: \[ f(g(x)) = x \] Differentiating both sides with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] Thus, we can express \( g'(x) \) as: \[ g'(x) = \frac{1}{f'(g(x))} \] ### Step 2: Find \( g(-\frac{7}{6}) \) To find \( g'(-\frac{7}{6}) \), we first need to find \( g(-\frac{7}{6}) \), which is equivalent to finding \( f^{-1}(-\frac{7}{6}) \). This means we need to solve the equation: \[ f(x) = -\frac{7}{6} \] ### Step 3: Set up the equation We need to solve: \[ -4e^{\frac{1-x}{2}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3} = -\frac{7}{6} \] Rearranging gives: \[ -4e^{\frac{1-x}{2}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{7}{6} = 0 \] This simplifies to: \[ -4e^{\frac{1-x}{2}} + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{13}{6} = 0 \] ### Step 4: Guess and check for a solution We can try \( x = 1 \): \[ f(1) = -4e^{\frac{1-1}{2}} + 1 + 1 + \frac{1^2}{2} + \frac{1^3}{3} \] Calculating this gives: \[ f(1) = -4 \cdot 1 + 1 + 1 + \frac{1}{2} + \frac{1}{3} = -4 + 1 + 1 + 0.5 + 0.333 = -4 + 2.833 = -1.167 \] This does not equal \(-\frac{7}{6}\). Now, let's try \( x = 0 \): \[ f(0) = -4e^{\frac{1-0}{2}} + 1 + 0 + 0 + 0 = -4e^{0.5} + 1 \] Calculating \( e^{0.5} \approx 1.6487 \): \[ f(0) \approx -4 \cdot 1.6487 + 1 \approx -6.5948 + 1 = -5.5948 \] This also does not equal \(-\frac{7}{6}\). ### Step 5: Finding the correct \( x \) After testing values, we find that \( x = 1 \) satisfies the equation \( f(1) = -\frac{7}{6} \). Thus: \[ g(-\frac{7}{6}) = 1 \] ### Step 6: Find \( f'(x) \) Now we need to compute \( f'(x) \): \[ f'(x) = \frac{d}{dx} \left(-4e^{\frac{1-x}{2}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3}\right) \] Calculating the derivative: \[ f'(x) = -4 \cdot \left(-\frac{1}{2} e^{\frac{1-x}{2}}\right) + 1 + x + x^2 \] Simplifying: \[ f'(x) = 2e^{\frac{1-x}{2}} + 1 + x + x^2 \] ### Step 7: Evaluate \( f'(1) \) Now we need to evaluate \( f'(1) \): \[ f'(1) = 2e^{0} + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 5 \] ### Step 8: Find \( g'(-\frac{7}{6}) \) Now substituting back to find \( g'(-\frac{7}{6}) \): \[ g'(-\frac{7}{6}) = \frac{1}{f'(g(-\frac{7}{6}))} = \frac{1}{f'(1)} = \frac{1}{5} \] ### Final Answer Thus, the value of \( g'(-\frac{7}{6}) \) is: \[ \boxed{\frac{1}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If the function f (x)=- 4e^((1-x)/(2))+1+x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1) (x), then the vlue of g'((-7)/(6)) equals to :

If the function f(x)=-4e^((1-x)/(2))+1+x+(x^(2))/(2)+(x^(3))/(3) and g(x)=f^(-1)(x) then the reciprocal of g'((-7)/(6)) is

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cos +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If the function _(x)f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x), then the value of g'(1) is

If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x) , then the value of |g^'(1)|/4 equals

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3)...

    Text Solution

    |

  2. Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  21. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |