Home
Class 12
MATHS
If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ...

If `f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)),` then `f '(0)` is equal to:

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = \sqrt{\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}} \), we will follow these steps: ### Step 1: Evaluate \( f(0) \) First, we need to find \( f(0) \): \[ f(0) = \sqrt{\frac{1 + \sin^{-1}(0)}{1 - \tan^{-1}(0)}} \] Since \( \sin^{-1}(0) = 0 \) and \( \tan^{-1}(0) = 0 \): \[ f(0) = \sqrt{\frac{1 + 0}{1 - 0}} = \sqrt{\frac{1}{1}} = \sqrt{1} = 1 \] ### Step 2: Differentiate \( f(x) \) Next, we will differentiate \( f(x) \). We can rewrite \( f(x) \) as: \[ f(x) = \left( \frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)} \right)^{1/2} \] Using the chain rule, we have: \[ f'(x) = \frac{1}{2} \left( \frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)} \right)^{-1/2} \cdot \frac{d}{dx} \left( \frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)} \right) \] ### Step 3: Differentiate the inside function Now we need to differentiate the inside function \( \frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)} \) using the quotient rule: Let \( u = 1 + \sin^{-1}(x) \) and \( v = 1 - \tan^{-1}(x) \). Using the quotient rule: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \] Where: - \( u' = \frac{d}{dx}(1 + \sin^{-1}(x)) = \frac{1}{\sqrt{1 - x^2}} \) - \( v' = \frac{d}{dx}(1 - \tan^{-1}(x)) = -\frac{1}{1 + x^2} \) So we have: \[ \frac{d}{dx}\left(\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}\right) = \frac{\left(\frac{1}{\sqrt{1 - x^2}}\right)(1 - \tan^{-1}(x)) - (1 + \sin^{-1}(x))\left(-\frac{1}{1 + x^2}\right)}{(1 - \tan^{-1}(x))^2} \] ### Step 4: Evaluate \( f'(0) \) Now we need to evaluate \( f'(0) \): 1. Substitute \( x = 0 \) into \( u' \) and \( v' \): - \( u'(0) = \frac{1}{\sqrt{1 - 0^2}} = 1 \) - \( v'(0) = -\frac{1}{1 + 0^2} = -1 \) 2. Substitute \( x = 0 \) into \( u \) and \( v \): - \( u(0) = 1 + \sin^{-1}(0) = 1 \) - \( v(0) = 1 - \tan^{-1}(0) = 1 \) Now we can find: \[ \frac{d}{dx}\left(\frac{1 + \sin^{-1}(x)}{1 - \tan^{-1}(x)}\right) \bigg|_{x=0} = \frac{(1)(1) - (1)(-1)}{(1)^2} = \frac{1 + 1}{1} = 2 \] Substituting back into \( f'(0) \): \[ f'(0) = \frac{1}{2} \left( \frac{1 + 0}{1 - 0} \right)^{-1/2} \cdot 2 = \frac{1}{2} \cdot 1 \cdot 2 = 1 \] ### Final Answer Thus, \( f'(0) = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|32 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK)|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK)|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=tan^(-1)x then f(x) is equal to ?

If f(x)=x tan^(-1)x, then f'(1) equals

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) then at x=1,f'(x) is equal to

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((4x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=(1+sqrt(2))/(2) then f(1) is equal to -log(sqrt(2)+1)( b )11+sqrt(2)(d) none of these

Consider a real - valued function f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x) The range of f (x) is

VIKAS GUPTA (BLACK BOOK)-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal...

    Text Solution

    |

  2. Let f (x)= {{:(ac (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x I [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and fifferentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(3),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Let f (x) =x ^(2) +ax+3 and g (x) =x+b, where F (x) =lim (xto oo) (f(x...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x)( =x ^(2) +2AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (piy)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  18. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  19. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |

  21. Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th)...

    Text Solution

    |