Home
Class 12
MATHS
The shortest distance between lines barr...

The shortest distance between lines `barr=(lambda-1)hati+(lambda+1)hatj-(1+lambda)hatk` and
`barr=(1-mu)hati+(2mu-1)hatj+(mu+2)hatk` is

A

`(sqrt(5))/(2)`

B

`(5)/(sqrt(2))`

C

15

D

`5sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we will follow these steps: ### Step 1: Write the equations of the lines in vector form The first line is given as: \[ \mathbf{r_1} = (\lambda - 1) \hat{i} + (\lambda + 1) \hat{j} - (1 + \lambda) \hat{k} \] We can express it in the form: \[ \mathbf{r_1} = \mathbf{a_1} + \lambda \mathbf{b_1} \] where: \[ \mathbf{a_1} = -\hat{i} + \hat{j} - \hat{k} \quad \text{and} \quad \mathbf{b_1} = \hat{i} + \hat{j} - \hat{k} \] The second line is given as: \[ \mathbf{r_2} = (1 - \mu) \hat{i} + (2\mu - 1) \hat{j} + (\mu + 2) \hat{k} \] We can express it in the form: \[ \mathbf{r_2} = \mathbf{a_2} + \mu \mathbf{b_2} \] where: \[ \mathbf{a_2} = \hat{i} - \hat{j} + 2 \hat{k} \quad \text{and} \quad \mathbf{b_2} = -\hat{i} - \hat{j} + \hat{k} \] ### Step 2: Calculate the vector \( \mathbf{a_2} - \mathbf{a_1} \) Now, we find: \[ \mathbf{a_2} - \mathbf{a_1} = (\hat{i} - \hat{j} + 2\hat{k}) - (-\hat{i} + \hat{j} - \hat{k}) \] This simplifies to: \[ \mathbf{a_2} - \mathbf{a_1} = \hat{i} + \hat{i} - \hat{j} - \hat{j} + 2\hat{k} + \hat{k} = 2\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 3: Calculate the cross product \( \mathbf{b_1} \times \mathbf{b_2} \) Next, we compute the cross product: \[ \mathbf{b_1} \times \mathbf{b_2} = (\hat{i} + \hat{j} - \hat{k}) \times (-\hat{i} - \hat{j} + \hat{k}) \] Using the determinant method: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ -1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix} \] \[ = \hat{i} (1 - 1) - \hat{j} (1 - 1) + \hat{k} (1 + 1) = 0\hat{i} - 0\hat{j} + 2\hat{k} = 2\hat{k} \] ### Step 4: Calculate the magnitude of the cross product The magnitude of \( \mathbf{b_1} \times \mathbf{b_2} \): \[ |\mathbf{b_1} \times \mathbf{b_2}| = |2\hat{k}| = 2 \] ### Step 5: Calculate the shortest distance The shortest distance \( d \) between the two lines is given by the formula: \[ d = \frac{|(\mathbf{a_2} - \mathbf{a_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] Calculating the dot product: \[ (\mathbf{a_2} - \mathbf{a_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2}) = (2\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (2\hat{k}) = 0 + 0 + 6 = 6 \] Thus, the shortest distance is: \[ d = \frac{|6|}{2} = 3 \] ### Final Answer: The shortest distance between the two lines is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • LINE

    TARGET PUBLICATION|Exercise Competitive Thinking|45 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • LINEAR PROGRAMMING

    TARGET PUBLICATION|Exercise Evaluation Test|11 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines bar(r) = (4hati - hatj) + lamda(hati + 2hatj - 3hatk) and bar(r) = (hati - hatj + 2hatk) + mu(hati + 4hatj - 5hatk).

Find the shortest distance between the following (1-4) lines whose vector equations are : (i) vec(r) = (lambda - 1) hati + (lambda -1) hatj - (1 + lambda ) hatk and vec(r) = (1 - mu) hat(i) + (2 mu - 1) hatj + (mu + 2) hatk (ii) vec(r) = (1 + lambda) hati + (2 - lambda) hatj + (1 + lambda) hatk and vec(r) = 2 (1 + mu) hati - (1 - mu) hatj + (-1 + 2mu ) hatk .

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)

Find the shortest distance between the two lines whose vector equations are given by: vecr=(1+lamda)hati+(2-lamda)hatj+(-1+lamda)hatk and vecr=2(1+mu)hati-(1-mu)hatj+(-1+2mu)hatk

Angle between lines barr=(hati+2hatj-hatk)+lambda(3hati-4hatk) and barr=(1-t)(4hati-hatj)+t(2hati+hatj-3hatk) is

The Cartesian equation of the plane vecr=(1+lambda-mu)hati+(2-lambda)hatj+(3-2lambda+2mu)hatk is

TARGET PUBLICATION-LINE-Critical Thinking
  1. The lines vecr=(2hati-3hatj+7hatk)+lamda(2hati+phatj+5hatk) and ve...

    Text Solution

    |

  2. If the lines (x-1)/(2)=(y-1)/(lambda)=(z-3)/(0) and (x-2)/(1)=(y-3)/...

    Text Solution

    |

  3. The lines and (x-1)/(3)=(y-2)/(4)=(z-3)/(5) (x-1)/(2)=(y-2)/(3)=(z-3)...

    Text Solution

    |

  4. Let veca=hati+hatj and vecb=2hati-hatk. Then the point of intersection...

    Text Solution

    |

  5. If the sum of the squares of the distances of a point from the three c...

    Text Solution

    |

  6. The foot of perpendicular from the point (1,2,3) to the line (x)/(2)=(...

    Text Solution

    |

  7. The co-ordinates of the foot of the perpendicular from the point (3,-1...

    Text Solution

    |

  8. Find the foot of the perpendicular from the point (0,2,3) on the line ...

    Text Solution

    |

  9. The length of perpendicular from the origin to the line vecr=(4hati=2h...

    Text Solution

    |

  10. The length of the perpendicular drawn from the point (5,4,-1) on the l...

    Text Solution

    |

  11. The length of perpendicular from (2, -1, 5) to the line (x-11)/(10)=(y...

    Text Solution

    |

  12. The co-ordinates of a point on the line (x-1)/(2)=(y+1)/(-3)=z at a di...

    Text Solution

    |

  13. A line passes through two points A(2,-3,-1) and B(8,-1,2). The coordin...

    Text Solution

    |

  14. Find the equation of the perpendicular drawn from the point (2,4,-1) t...

    Text Solution

    |

  15. Two lines (x)/(1)=(y)/(2)=(z)/(3)and(x+1)/(1)=(y+2)/(2)=(z+3)/(3) are

    Text Solution

    |

  16. Find the shortest distance between the following pair of line: vecr=(1...

    Text Solution

    |

  17. The shortest distance between lines barr=(lambda-1)hati+(lambda+1)hatj...

    Text Solution

    |

  18. If the lines (x-1)/(k)=(y+1)/(3)=(z-1)/(4)and(x-3)/(1)=(2y-9)/(2k)=(z)...

    Text Solution

    |

  19. Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hat...

    Text Solution

    |

  20. A line segment has length 63 and direction ratios are 3, -2, 6. The ...

    Text Solution

    |