Home
Class 12
MATHS
int(x-1)/(x+1)^(2)dx=...

`int(x-1)/(x+1)^(2)dx=`

A

`logabs(x+1)+2/(x+1)+c`

B

`logabs(x+1)-2/(x+1)+c`

C

`2/(x+1)-logabs(x+1)+c`

D

`2logabs(x+1)-1/(x+1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x-1}{(x+1)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand \( \frac{x-1}{(x+1)^2} \) by adding and subtracting 1 in the numerator: \[ \frac{x-1}{(x+1)^2} = \frac{(x+1) - 2}{(x+1)^2} = \frac{x+1}{(x+1)^2} - \frac{2}{(x+1)^2} \] ### Step 2: Split the integral Now we can split the integral into two separate integrals: \[ \int \frac{x-1}{(x+1)^2} \, dx = \int \frac{x+1}{(x+1)^2} \, dx - 2 \int \frac{1}{(x+1)^2} \, dx \] ### Step 3: Simplify the first integral The first integral simplifies as follows: \[ \int \frac{x+1}{(x+1)^2} \, dx = \int \frac{1}{x+1} \, dx \] ### Step 4: Integrate the first term The integral of \( \frac{1}{x+1} \) is: \[ \int \frac{1}{x+1} \, dx = \ln |x+1| \] ### Step 5: Integrate the second term Now we integrate the second term: \[ -2 \int \frac{1}{(x+1)^2} \, dx \] The integral of \( \frac{1}{(x+1)^2} \) is: \[ \int \frac{1}{(x+1)^2} \, dx = -\frac{1}{x+1} \] Thus, we have: \[ -2 \int \frac{1}{(x+1)^2} \, dx = -2 \left(-\frac{1}{x+1}\right) = \frac{2}{x+1} \] ### Step 6: Combine the results Now we can combine the results from the two integrals: \[ \int \frac{x-1}{(x+1)^2} \, dx = \ln |x+1| + \frac{2}{x+1} + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{x-1}{(x+1)^2} \, dx = \ln |x+1| + \frac{2}{x+1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(2x-1)/((x-1)^(2))dx

Evaluate: (i) (x^(2)+3x-1)/((x+1)^(2))dx (ii) int(2x-1)/((x-1)^(2))dx

int(x+1)/(x^(2)+1)dx

Evaluate: int(x-1)/((x+1)(x-2))dx

int((x-1)/((x+1)^(2)(x-2))dx

int(1)/((x+1)(x+2))dx

int(1)/(x^(2)+x+1)dx

(i) int (1)/(x(x+1)^(2))dx (ii) int (1)/((x+1)^(2)(x-1))dx

Evaluate: int(x^2+1)/(x+1)^2dx

Evlauate : int(x-1)/((x+1)(x^(2)+1))dx