Home
Class 12
MATHS
If f(x)=(1)/(1-x), then int(f(o) f(o)f)(...

If `f(x)=(1)/(1-x)`, then `int(f_(o) f_(o)f)(x)dx=`

A

`x+c`

B

`x^(2)/2+c`

C

`x^(3)/3+c`

D

`x^(4)/4+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(1-x) , then int(f(f(f(x))))dx=

If : x(x^(4)+1).f(x)=1 , then : int_(1)^(2)f(x)dx=

inte^(x)[f(x)+f'(x)]dx=

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

inte^(x).[f(x)-f''(x)]dx=