Home
Class 12
MATHS
If int(cosx-sinx)dx=sqrt(2)sin(x+alpha)+...

If `int(cosx-sinx)dx=sqrt(2)sin(x+alpha)+c, " then " alpha=`

A

`pi/3`

B

`-pi/3`

C

`pi/4`

D

`-pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) in the equation: \[ \int (\cos x - \sin x) \, dx = \sqrt{2} \sin(x + \alpha) + C \] ### Step 1: Integrate the left-hand side We start by integrating \( \cos x - \sin x \): \[ \int (\cos x - \sin x) \, dx = \int \cos x \, dx - \int \sin x \, dx \] Using the known integrals: - \( \int \cos x \, dx = \sin x \) - \( \int \sin x \, dx = -\cos x \) Thus, we have: \[ \int (\cos x - \sin x) \, dx = \sin x + \cos x + C \] ### Step 2: Rewrite the result Now we need to express \( \sin x + \cos x \) in a form that resembles \( \sqrt{2} \sin(x + \alpha) \). We can factor out \( \sqrt{2} \): \[ \sin x + \cos x = \sqrt{2} \left( \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right) \] ### Step 3: Identify the angle We know that: \[ \frac{1}{\sqrt{2}} = \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) \] Thus, we can rewrite our expression as: \[ \sin x + \cos x = \sqrt{2} \left( \sin\left(\frac{\pi}{4}\right) \sin x + \cos\left(\frac{\pi}{4}\right) \cos x \right) \] Using the sine addition formula: \[ \sin A \cos B + \cos A \sin B = \sin(A + B) \] we can write: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] ### Step 4: Final equation Now, substituting this back into our integral result, we get: \[ \sin x + \cos x + C = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) + C \] ### Step 5: Compare with the given equation From the original equation: \[ \sqrt{2} \sin(x + \alpha) + C \] we can see that: \[ \alpha = \frac{\pi}{4} \] ### Conclusion Thus, the value of \( \alpha \) is: \[ \alpha = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If inte^(x)sin x dx=(sqrt2)/(2)e^(x)sin(x+alpha)+c, then alpha=

int((cosx-sinx))/((1+sin2x))dx

If int(sinx)/(sin(x-alpha))dx=Ax+Blogsin(x-alpha)+c then

int(cosx)/((1+sinx)(2+sin x))dx

I=int (sinx+cosx)/sqrt(1-sin2x) dx

Evaluate: int(cosx-sinx)/(sqrt(8-sin2x))\ dx

int(cosx-sinx)/(1+2sin x cosx)dx is equal to

int(sin x)/(sin(x+alpha)dx)

int(sin2x)/(sin(x-alpha)sin(x+alpha))dx