Home
Class 12
MATHS
inttan^(-1)(sinx/(1+cosx))dx=...

`inttan^(-1)(sinx/(1+cosx))dx=`

A

`x^(2)/2+c`

B

`x^(2)/3+c`

C

`x^(2)/4+c`

D

`x^(2)/5+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) dx \), we can use trigonometric identities to simplify the expression. Here’s the step-by-step solution: ### Step 1: Simplify the Argument of the Inverse Tangent We start with the expression inside the inverse tangent: \[ \frac{\sin x}{1 + \cos x} \] Using the identity \( 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \) and \( \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \), we can rewrite: \[ \frac{\sin x}{1 + \cos x} = \frac{2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)}{2 \cos^2\left(\frac{x}{2}\right)} = \tan\left(\frac{x}{2}\right) \] Thus, we have: \[ \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) = \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2} \] ### Step 2: Substitute Back into the Integral Now we can substitute this back into the integral: \[ \int \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) dx = \int \frac{x}{2} dx \] ### Step 3: Integrate Now we can integrate: \[ \int \frac{x}{2} dx = \frac{1}{2} \int x \, dx = \frac{1}{2} \cdot \frac{x^2}{2} + C = \frac{x^2}{4} + C \] ### Final Answer Thus, the final result is: \[ \int \tan^{-1}\left(\frac{\sin x}{1 + \cos x}\right) dx = \frac{x^2}{4} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intcot^(-1)((1+sinx)/(cosx))dx=

(d)/(dx)[tan^(-1)((sinx)/(1+cosx))]=

inte^(x)((1+sinx)/(1+cosx))dx=

int(1+sinx)/(sinx(1+cosx))dx

inte^(x)(1-sinx)/(1-cosx)dx=

int((x-sinx)/(1+cosx))dx

inte^(x)((1+sinx)/(1+cosx))dx=?

int(sinx)/((1+cosx))dx

int(x-sinx)/(1-cosx)dx

int((1+sinx))/((1+cosx))dx=?