Home
Class 12
MATHS
int(secx+tanx)^(2)dx=...

`int(secx+tanx)^(2)dx=`

A

`2(secx+tanx)-x+c`

B

`1/3(secx+tanx)^(3)+c`

C

`secx(secx+tanx)+c`

D

`2(secx+tanx)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(1)/(secx+tanx)dx=

int(tanx-cotx)^(2)dx=

intsqrt(1+2tanx(secx+tanx))dx=

intsecx/(secx+tanx)dx

inte^(x)secx(1+tanx)dx=?

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int(3cotx - 2 tanx)^(2) dx

int tanx sec^(2)x*dx