Home
Class 12
MATHS
int(f'(x))/([f(x)]^(2))dx=...

`int(f'(x))/([f(x)]^(2))dx=`

A

`-[f(x)]^(-1)+c`

B

`log[f(x)]+c`

C

`e^(f(x))+c`

D

`-log[f(x)]+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(f'(x))/(sqrt(f(x)))*dx

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

int(f'(x))/(f(x)log{f(x)})dx=

int(f'(x))/(f(x))dx=log f(x)+c

int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=

int_(0)^(a)(f(x))/(f(x)+f(a-x))dx=

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

If f(x)=int_(a)^(x)[f(x)]^(-1)dxand int_(a)^(1)[f(x)]^(-1)dx=sqrt(2), then f(2)=2( b) f'(2)=(1)/(2)f'(2)=2(d)int_(0)^(1)f(x)dx=sqrt(2)

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.