Home
Class 12
MATHS
int(dx)/(4cos^(3)2x-3cos2x)=...

`int(dx)/(4cos^(3)2x-3cos2x)=`

A

`1/3logabs(sec6x+tan6x)+c`

B

`1/6logabs(sec6x+tan6x)+c`

C

`logabs(sec6x+tan6x)+c`

D

`3logabs(sec6x+tan6x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{4 \cos^3(2x) - 3 \cos(2x)}, \] we can follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the denominator \(4 \cos^3(2x) - 3 \cos(2x)\). We can use the trigonometric identity for \(\cos(3x)\): \[ \cos(3x) = 4 \cos^3(x) - 3 \cos(x). \] In our case, we can let \(x = 2x\): \[ \cos(3(2x)) = 4 \cos^3(2x) - 3 \cos(2x) = \cos(6x). \] Thus, we can rewrite the denominator: \[ 4 \cos^3(2x) - 3 \cos(2x) = \cos(6x). \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral as: \[ \int \frac{dx}{\cos(6x)}. \] ### Step 3: Change the Integral Form We know that \(\frac{1}{\cos(6x)} = \sec(6x)\). Therefore, the integral becomes: \[ \int \sec(6x) \, dx. \] ### Step 4: Integrate \(\sec(6x)\) The integral of \(\sec(kx)\) is given by the formula: \[ \int \sec(kx) \, dx = \frac{1}{k} \ln | \sec(kx) + \tan(kx) | + C. \] In our case, \(k = 6\). Thus, we have: \[ \int \sec(6x) \, dx = \frac{1}{6} \ln | \sec(6x) + \tan(6x) | + C. \] ### Final Answer Putting it all together, we find: \[ \int \frac{dx}{4 \cos^3(2x) - 3 \cos(2x)} = \frac{1}{6} \ln | \sec(6x) + \tan(6x) | + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(3+4cos2x)=

int(dx)/(3+2cos^(2)x)

int(dx)/(3cos2x+5)=

int(dx)/(3-2cos2x)=

int(dx)/(2-3cos2x)

int(dx)/(cos(2x)cos(4x))=

int(dx)/(3sin^(2)x+4cos^(2)x)

int(sin x)/(cos3x*cos2x)dx

int(sinx)/(3+4cos^(2)x)dx

int(sinx dx)/((3+cos^(2)x))=