Home
Class 12
MATHS
int1/((e^(2x)+e^(-2x))^(2))dx=...

`int1/((e^(2x)+e^(-2x))^(2))dx=`

A

`(-1)/(4(e^(4x)+1))+c`

B

`1/(4(e^(4x)+1))+c`

C

`(-1)/(2(e^(4x)+1))+c`

D

`1/(2(e^(4x)+1))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1}{(e^{2x} + e^{-2x})^2} \, dx, \] we can follow these steps: ### Step 1: Simplify the expression inside the integral We start by rewriting \( e^{2x} + e^{-2x} \). We can express this in terms of hyperbolic functions: \[ e^{2x} + e^{-2x} = 2 \cosh(2x). \] Thus, we have: \[ (e^{2x} + e^{-2x})^2 = (2 \cosh(2x))^2 = 4 \cosh^2(2x). \] So, we can rewrite the integral as: \[ \int \frac{1}{(e^{2x} + e^{-2x})^2} \, dx = \int \frac{1}{4 \cosh^2(2x)} \, dx = \frac{1}{4} \int \frac{1}{\cosh^2(2x)} \, dx. \] ### Step 2: Use the identity for hyperbolic secant Recall that \[ \frac{1}{\cosh^2(u)} = \text{sech}^2(u). \] Thus, we can rewrite the integral as: \[ \frac{1}{4} \int \text{sech}^2(2x) \, dx. \] ### Step 3: Integrate using the derivative of hyperbolic tangent The integral of \(\text{sech}^2(u)\) is \(\tanh(u)\). Therefore, we have: \[ \int \text{sech}^2(2x) \, dx = \frac{1}{2} \tanh(2x) + C, \] where \(C\) is the constant of integration. ### Step 4: Substitute back into the integral Now we can substitute back into our expression: \[ \frac{1}{4} \int \text{sech}^2(2x) \, dx = \frac{1}{4} \left( \frac{1}{2} \tanh(2x) + C \right) = \frac{1}{8} \tanh(2x) + \frac{C}{4}. \] ### Final Answer Thus, the final answer to the integral is: \[ \int \frac{1}{(e^{2x} + e^{-2x})^2} \, dx = \frac{1}{8} \tanh(2x) + C, \] where \(C\) is the constant of integration. ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int (e^(2x) +e^(-2x))/(e^(x)) dx

int(dx)/(e^(x)+e^(2x))

int(e^(2x-1)-e^(1-2x))/(e^(x+2))dx

Evaluate: int(e^(2x)-2e^(x))/(e^(2x)+1)dx

int(e^(2x))/(2+e^(2x))dx

int(e^(2x))/(e^(2x)-2)dx

int((e^(2x))/(e^(2x)-1))dx=

int(e^(2x)+1)/(e^(x))dx

int(e^(2x))/(1+e^(x))dx