Home
Class 12
MATHS
inte^(x)tan^(2)(e^(x))dx=...

`inte^(x)tan^(2)(e^(x))dx=`

A

`tan(e^(x))-x+c`

B

`e^(x)[tan(e^(x))-1]+c`

C

`sec(e^(x))+c`

D

`tan(e^(x))-e^(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int e^(x)tan(e^(x))dx

inte^(-x)tan^-1(e^x)dx

int e^(x)tan e^(x)dx

int e^(log(1+tan^(2)x))dx=

int e^(log(1+tan^(2)x))dx=

int sin4x*e^(tan^(2)x)dx

int sin4x*e^(tan^(2)x)dx

Evaluate int sin4x*e^(tan^(2)x)))dx

int(e^(x))/((1+x)^(3))dx-int(e^(x))/(2(1+x)^(2))dx=

int(dx)/(e^(x)+e^(2x))