Home
Class 12
MATHS
(1)/(cos^(2)x(1-tanx)^(2))...

`(1)/(cos^(2)x(1-tanx)^(2))`

A

`1/(tanx-1)+c`

B

`1/(1-tanx)+c`

C

`-1/(3(1-tanx)^(3))+c`

D

`1/(2(1-tanx))+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intdx/(cos^2x(1-tanx)^2)

If f(x) = (1)/(cos^(2)xsqrt(1+tanx)) then its antiderivative F(x) (given that F(0) = (4) is

If f(x) =(1)/(cos^(2)xsqrt(1+tanx)) , then its anit-derivate F(x) satisfying F(0) = 4 is :

(1+cos4x)/(cotx-tanx)

If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4))=

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

"If "y=(tanx)^(cotx)+(cotx)^(tanx)",prove that "(dy)/(dx)=(tanx)^(cotx)."cosec"^(2)x(1-logtanx)+(cotx)^(tanx).sec^(2)x[log(cotx)-1].

tan^(-1)((1)/(sqrt(3))(tan x)/(2))=(1)/(2)cos^(-1)((1+2cos x)/(2+cos x))

2cos^(-1)x=cos^(-1)(2x^(2)-1)