Home
Class 12
MATHS
The value of intx^(3)/sqrt(1+x^(4))dx is...

The value of `intx^(3)/sqrt(1+x^(4))dx` is

A

`(1+x^(4))^(1/2)+c`

B

`-(1+x^(4))^(1/2)+c`

C

`1/2(1+x^(4))^(1/2)+c`

D

`-1/2(1+x^(4))^(1/2)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intx^(5)/sqrt(1+x^(3))dx=

intx^(2)/sqrt(x^(3)+1)dx

Evaluate : intx^(3)sqrt(x^(2)-4) dx

=intx^4/(sqrt(1-x^(5)))dx

intx^3/sqrt(1+x^8)dx

intx^(1/3)sin(x^(4/3))dx

intx^2/sqrt(1-x)dx

The value of int_(-4)^(4)(sqrt(1+x+x^(2))-sqrt(1-x+x^(2)))dx is

intx/sqrt(x^(4)-4)dx=