Home
Class 12
MATHS
int(sinxcosx)/(3sin^(2)x+5cos^(2)x)dx=...

`int(sinxcosx)/(3sin^(2)x+5cos^(2)x)dx=`

A

`1/4logabs(3sin^(2)x+5cos^(2)x)+c`

B

`-1/4logabs(3sin^(2)x+5cos^(2)x)+c`

C

`1/4logabs(3sin^(2)x-5cos^(2)x)+c`

D

`-1/4logabs(3sin^(2)x-5cos^(2)x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sin x \cos x}{3 \sin^2 x + 5 \cos^2 x} \, dx, \] we can follow these steps: ### Step 1: Simplify the Denominator We start with the expression in the denominator: \[ 3 \sin^2 x + 5 \cos^2 x. \] Using the identity \(\cos^2 x = 1 - \sin^2 x\), we can rewrite the denominator: \[ 3 \sin^2 x + 5 (1 - \sin^2 x) = 3 \sin^2 x + 5 - 5 \sin^2 x = (3 - 5) \sin^2 x + 5 = -2 \sin^2 x + 5. \] Thus, the integral becomes: \[ \int \frac{\sin x \cos x}{5 - 2 \sin^2 x} \, dx. \] ### Step 2: Use Substitution Let us use the substitution: \[ t = 5 - 2 \sin^2 x. \] Now, we need to differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = -4 \sin x \cos x. \] This implies: \[ dt = -4 \sin x \cos x \, dx \quad \Rightarrow \quad \sin x \cos x \, dx = -\frac{1}{4} dt. \] ### Step 3: Substitute in the Integral Substituting \(t\) and \(dt\) into the integral gives: \[ \int \frac{-\frac{1}{4} dt}{t} = -\frac{1}{4} \int \frac{dt}{t}. \] ### Step 4: Integrate The integral of \(\frac{1}{t}\) is: \[ \int \frac{dt}{t} = \ln |t| + C. \] Thus, we have: \[ -\frac{1}{4} \ln |t| + C = -\frac{1}{4} \ln |5 - 2 \sin^2 x| + C. \] ### Step 5: Final Answer We can express the final answer as: \[ -\frac{1}{4} \ln |5 - 2 \sin^2 x| + C. \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin x cos x)/(3sin^(2)x-4cos^(2)x)dx

int((sinx+cosx)(1-sinxcosx))/(sin^(2)x cos^(2)x)dx=

int(5)/(sin^(2)x cos^(2)x)dx

int(sinx.cosx)/(a^2sin^2x+b^2cos^2x)dx

int(dx)/(3sin^(2)x+4cos^(2)x)

Evaluate: ( i int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx (ii) int(5cos^(3)x+6sin^(3)x)/(2sin^(2)x cos^(2)x)dx

int(sin^(3)x-cos^(3)x)/(sin^(2)x cos^(2)x)dx

int(3sin^(3)x+cos^(3)x)/(sin^(2)xcos^(2)x)dx=

int(sin^(6)x+cos^(6)x+3sin^(2)x cos^(2)x)dx is equal to

int(a sin^(3)x+b cos^(3)x)/(sin^(2)x cos^(2)x)dx