Home
Class 12
MATHS
intsqrt(1+2tanx(secx+tanx))dx=...

`intsqrt(1+2tanx(secx+tanx))dx=`

A

`-logabs(1-sinx)+c`

B

`logabs(secx+tanx)+c`

C

`logabs(secx(cosecx-cotx))+c`

D

`(sec^(2)x+tan^(2)x)/(2sqrt(1+2tanx(secx+tanx)))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1 + 2 \tan x (\sec x + \tan x)} \, dx\), we will follow these steps: ### Step 1: Simplify the expression inside the square root We start by rewriting \(1\) in terms of \(\sec^2 x\) and \(\tan^2 x\): \[ 1 = \sec^2 x - \tan^2 x \] Thus, we can rewrite the integral as: \[ \int \sqrt{\sec^2 x - \tan^2 x + 2 \tan x (\sec x + \tan x)} \, dx \] ### Step 2: Expand the expression Next, we expand \(2 \tan x (\sec x + \tan x)\): \[ 2 \tan x (\sec x + \tan x) = 2 \tan x \sec x + 2 \tan^2 x \] Now substituting this back, we have: \[ \sqrt{\sec^2 x - \tan^2 x + 2 \tan x \sec x + 2 \tan^2 x} \] This simplifies to: \[ \sqrt{\sec^2 x + \tan^2 x + 2 \tan x \sec x} \] ### Step 3: Recognize a perfect square The expression inside the square root can be recognized as a perfect square: \[ \sec^2 x + 2 \tan x \sec x + \tan^2 x = (\sec x + \tan x)^2 \] Thus, we can rewrite the integral as: \[ \int \sqrt{(\sec x + \tan x)^2} \, dx \] Since \(\sec x + \tan x\) is positive in the domain we are considering, we can simplify this to: \[ \int (\sec x + \tan x) \, dx \] ### Step 4: Integrate The integral of \(\sec x + \tan x\) is a standard result: \[ \int (\sec x + \tan x) \, dx = \ln |\sec x + \tan x| + C \] ### Final Answer Thus, the final answer to the integral is: \[ \ln |\sec x + \tan x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(tanx)/(secx+tanx)dx=

int(secx+tanx)^(2)dx=

(i) int (tanx)/((secx + tanx))dx ,(ii) int(cosecx)/((cosecx- cotx))dx

int(1)/(a secx+b tanx)dx=

tan^(-1)(secx+tanx)

intsqrt(tanx)secxcosecxdx

int(1)/(secx+tanx)dx=

intsinxlog(secx+tanx)dx=

intsecx/(secx+tanx)dx

int_0^pi (xtanx)/(secx+tanx)dx