Home
Class 12
MATHS
int(dx)/(xsqrt(1-(logx)^(2))=...

`int(dx)/(xsqrt(1-(logx)^(2))=`

A

`cos^(-1)(logx)+c`

B

`xlog(1-x^(2))+c`

C

`sin^(-1)(logx)+c`

D

`1/2cos^(-1)(logx)+c`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(1-x^(3)))dx=

int1/(x(1-logx)^(2))dx=

int(dx)/(x(1+(logx)^(2))) equals

int(1)/(sqrt(x^(2)-(x.logx)^(2)))dx=

int(sqrt(1+(logx)^2))/(x)dx=

int(logx)^(2)dx=?

int_(1)^(2)(dx)/(x(1+logx)^(2))

int(dx)/(xsqrt(x^(2)-4))