Home
Class 12
MATHS
The value of int(2dx)/sqrt(1-4x^(2)) is...

The value of `int(2dx)/sqrt(1-4x^(2))` is

A

`tan^(-1)(2x)+c`

B

`cos^(-1)(2x)+c`

C

`cot^(-1)(2x)+c`

D

`sin^(-1)(2x)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{2x \, dx}{\sqrt{1 - 4x^2}} \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let us use the substitution: \[ u = 1 - 4x^2 \] Then, we differentiate \( u \) with respect to \( x \): \[ \frac{du}{dx} = -8x \quad \Rightarrow \quad du = -8x \, dx \quad \Rightarrow \quad dx = \frac{du}{-8x} \] ### Step 2: Rewrite the integral Now we can rewrite the integral in terms of \( u \): \[ I = \int \frac{2x \cdot \frac{du}{-8x}}{\sqrt{u}} = \int \frac{-2}{8} \frac{du}{\sqrt{u}} = -\frac{1}{4} \int u^{-1/2} \, du \] ### Step 3: Integrate Now we can integrate: \[ -\frac{1}{4} \int u^{-1/2} \, du = -\frac{1}{4} \cdot 2u^{1/2} + C = -\frac{1}{2} \sqrt{u} + C \] ### Step 4: Substitute back Now we substitute back \( u = 1 - 4x^2 \): \[ I = -\frac{1}{2} \sqrt{1 - 4x^2} + C \] ### Final Result Thus, the value of the integral is: \[ I = -\frac{1}{2} \sqrt{1 - 4x^2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(1+4x^(2)))

int(dx)/(sqrt(9-4x^(2)))

The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

int(x)/(sqrt(1-4x^(2)))dx

int(dx)/(sqrt(4x^(2)+1))

int(dx)/(sqrt(4x^2-5))=

int(dx)/(sqrt(4x^(2)+5))

int(dx)/(sqrt(4x^(2)-9))