Home
Class 12
MATHS
If int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-...

If `int(2^(x))/(sqrt(1-4^(x)))dx=k.sin^(-1)(2^(x))+c`, then : `k=`

A

log 2

B

`1/2`

C

`1/2 log2`

D

`1/(log2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

int(x sin^(-1)x)/(sqrt(1-x^(2)))dx

int(dx)/(sqrt(a^(2)-x^(2)))=sin^(-1)(x/a)+C

If int(1)/((x+1)sqrt(x-1))dx=k.tan^(-1)sqrt((x-1)/(2))+c then k =

int(1)/((sqrt(1-x^(2)))sin^(-1)x)dx

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int(-dx)/((x-2)sqrt(x^(2)-4x))=(1)/(k)cos ec^(-1)(f(x))+c, then (k,f(x))

int2^x/sqrt(1-4^x) dx =lamda sin^-1 2^x+c then lamda equals to