Home
Class 12
MATHS
inte^(log(1+1/x^(2)))/(x^(2)+1/x^(2))dx=...

`inte^(log(1+1/x^(2)))/(x^(2)+1/x^(2))dx=`

A

`1/sqrt(2)tan^(-1)((x^(2)-1)/(xsqrt(2)))+c`

B

`1/sqrt(2)log((x^(2)+1)/(xsqrt(2)))+c`

C

`(-1)/sqrt(2)tan^(-1)(x-1/x)+c`

D

`1/sqrt(2)tan^(-1)(x-1/x)+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : int(e^(log(1+(1)/(x^(2)))))/(x^(2)+(1)/(x^(2)))dx=(1)/(sqrt(2))tan^(-1).(x^(2)-1)/(sqrt(2)x)+c and STATEMENT-2 : e^(logx) is equal to x if x gt 0 .

Evaluate: int((log(1+x^(2)))/((x+1)^(2))dx

Evaluate int(log(1+x^(2)))/((x+1)^(2))dx

int((1+log x)^(2))/(x)dx=

int((1*log x)^(2))/(x)*dx

int(x log(x+1)^(2)dx)

int e^(ln(1+(1)/(x^(2))))*(x(x^(2)-1))/(x^(4)+1)dx=

int(1)/(sqrt((log.(1)/(2))^(2)-x^(2)))dx=

int(1)/(x(log x)^(2))dx