Home
Class 12
MATHS
The value of int(dx)/(xsqrt(x^(4)-1)) is...

The value of `int(dx)/(xsqrt(x^(4)-1))` is

A

`1/2sec^(-1)x^(2)+c`

B

`logxsqrt(x^(4)-1)+c`

C

`xlogsqrt(x^(4)-1)+c`

D

`logsqrt(x^(4)-1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{x \sqrt{x^4 - 1}} \), we can follow these steps: ### Step 1: Substitution Let \( t = x^2 \). Then, differentiating both sides, we get: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Since \( x = \sqrt{t} \), we can substitute \( dx \) in terms of \( t \): \[ dx = \frac{dt}{2\sqrt{t}} \] ### Step 2: Rewrite the Integral Substituting \( dx \) into the integral: \[ \int \frac{dx}{x \sqrt{x^4 - 1}} = \int \frac{\frac{dt}{2\sqrt{t}}}{\sqrt{t} \sqrt{(\sqrt{t})^4 - 1}} = \int \frac{dt}{2t \sqrt{t^2 - 1}} \] ### Step 3: Simplifying the Integral Now we have: \[ \int \frac{dt}{2t \sqrt{t^2 - 1}} \] This can be simplified to: \[ \frac{1}{2} \int \frac{dt}{t \sqrt{t^2 - 1}} \] ### Step 4: Recognizing the Integral Form The integral \( \int \frac{dt}{t \sqrt{t^2 - 1}} \) is a standard integral that evaluates to: \[ \sec^{-1}(t) + C \] Thus, we have: \[ \frac{1}{2} \sec^{-1}(t) + C \] ### Step 5: Back Substituting Recall that \( t = x^2 \), so we substitute back: \[ \frac{1}{2} \sec^{-1}(x^2) + C \] ### Final Answer The value of the integral is: \[ \int \frac{dx}{x \sqrt{x^4 - 1}} = \frac{1}{2} \sec^{-1}(x^2) + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(xsqrt(x^(2)-4))

The value of int(dx)/(xsqrt(1-x^(3))) is equal to

int(dx)/(xsqrt(x^(6)-1))=?

int(dx)/(xsqrt(x^(6)-16))=

int(dx)/(xsqrt(x^(6)+1)) equals

Find the value of int(dx)/(x^(4)-1)

int(dx)/(xsqrt(1-x^(3)))dx=

The value of inte^(x)(x^(5)+5x^(4)+1)dx is