Home
Class 12
MATHS
intsqrt(x^(2)-8x+7)dx=...

`intsqrt(x^(2)-8x+7)dx=`

A

`1/2(x-4)sqrt(x^(2)-8x+7)+9logabs(x-4+sqrt(x^(2)-8x+7)+c`

B

`1/2(x-4)sqrt(x^(2)-8x+7)-3sqrt(2)logabs(x-4+sqrt(x^(2)-8x+7))+c`

C

`1/2(x-4)sqrt(x^(2)-8x+7)-9/2logabs(x-4+sqrt(x^(2)-8x+7))+c`

D

`1/2(x-4)sqrt(x^(2)-8x+7)+3sqrt(2)logabs(x-4+sqrt(x^(2)-8x+7))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{x^2 - 8x + 7} \, dx\), we will follow these steps: ### Step 1: Simplify the expression under the square root First, we need to complete the square for the quadratic expression \(x^2 - 8x + 7\). \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 16 + 7 = (x - 4)^2 - 9 \] ### Step 2: Rewrite the integral Now we can rewrite the integral using the completed square: \[ \int \sqrt{(x - 4)^2 - 9} \, dx \] ### Step 3: Use a trigonometric substitution To solve the integral, we can use the substitution \(x - 4 = 3 \sec(\theta)\). Then, \(dx = 3 \sec(\theta) \tan(\theta) \, d\theta\). ### Step 4: Substitute and simplify Substituting into the integral gives: \[ \int \sqrt{(3 \sec(\theta))^2 - 9} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta \] This simplifies to: \[ \int \sqrt{9 \sec^2(\theta) - 9} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta = \int \sqrt{9(\sec^2(\theta) - 1)} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta \] Using the identity \(\sec^2(\theta) - 1 = \tan^2(\theta)\): \[ = \int \sqrt{9 \tan^2(\theta)} \cdot 3 \sec(\theta) \tan(\theta) \, d\theta = \int 3 \tan(\theta) \cdot 3 \sec(\theta) \tan(\theta) \, d\theta = 9 \int \tan^2(\theta) \sec(\theta) \, d\theta \] ### Step 5: Use the identity for \(\tan^2(\theta)\) We know that \(\tan^2(\theta) = \sec^2(\theta) - 1\), so we can rewrite the integral: \[ 9 \int (\sec^2(\theta) - 1) \sec(\theta) \, d\theta = 9 \left( \int \sec^3(\theta) \, d\theta - \int \sec(\theta) \, d\theta \right) \] ### Step 6: Integrate The integral of \(\sec^3(\theta)\) can be solved using integration by parts, and the integral of \(\sec(\theta)\) is known: \[ \int \sec(\theta) \, d\theta = \ln | \sec(\theta) + \tan(\theta) | + C \] ### Step 7: Back substitute After calculating the integrals, we will substitute back in terms of \(x\) using the original substitution \(x - 4 = 3 \sec(\theta)\). ### Final Result The final result will be in terms of \(x\) and will include a constant of integration \(C\).
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

intsqrt(x^(2)-2)dx

intsqrt(x^(2)-4x+2)dx=?

intsqrt(x^(2)-5)dx

intsqrt(x^(2)-16)dx=?

intsqrt(x^(2)+x+1)dx.

intsqrt(x^(2)+4x+1)dx

intsqrt(x^(2)+x+1)dx

intsqrt(2x^(2)-3)dx

intsqrt(x^(2)+x)dx

intsqrt(4-x^(2))dx