Home
Class 12
MATHS
If intxe^(2x)dx is equal to e^(2x)f(x)+c...

If `intxe^(2x)dx` is equal to `e^(2x)f(x)+c`, where c is constant of integration, then f(x) is

A

`(3x-1)//4`

B

`(2x+1)//2`

C

`(2x-1)//4`

D

`(x-4)//6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x e^{2x} \, dx \) and express it in the form \( e^{2x} f(x) + c \), we will use the method of integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: - \( u = x \) (which we will differentiate) - \( dv = e^{2x} \, dx \) (which we will integrate) Therefore, we need to compute \( du \) and \( v \): - \( du = dx \) - \( v = \int e^{2x} \, dx = \frac{1}{2} e^{2x} \) 2. **Apply the integration by parts formula**: The formula for integration by parts is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ \int x e^{2x} \, dx = x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \, dx \] 3. **Evaluate the remaining integral**: We need to compute \( \int \frac{1}{2} e^{2x} \, dx \): \[ \int \frac{1}{2} e^{2x} \, dx = \frac{1}{2} \cdot \frac{1}{2} e^{2x} = \frac{1}{4} e^{2x} \] 4. **Combine the results**: Now substituting back into our equation: \[ \int x e^{2x} \, dx = \frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} + C \] 5. **Factor out \( e^{2x} \)**: We can factor \( e^{2x} \) out of the expression: \[ \int x e^{2x} \, dx = e^{2x} \left( \frac{1}{2} x - \frac{1}{4} \right) + C \] 6. **Identify \( f(x) \)**: From the expression \( e^{2x} f(x) + C \), we can identify: \[ f(x) = \frac{1}{2} x - \frac{1}{4} \] ### Final Answer: Thus, the function \( f(x) \) is: \[ f(x) = \frac{1}{2} x - \frac{1}{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|165 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • LINE

    TARGET PUBLICATION|Exercise Evaluation Test|1 Videos

Similar Questions

Explore conceptually related problems

If int x e ^(2x) is equal to e ^(2x) f (x) + c where C is constant of integration then f (x) is ((2x -1))/( 2)

If int e^(2x)(cos x+7sin x)dx=e^(2x)g(x)+c where c is constant of integration then g(0)+g((pi)/(2))=

Knowledge Check

  • If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

    A
    -1
    B
    1
    C
    `-(1)/(2)`
    D
    `-(5)/(2)`
  • What is int a^(x) e^(x) dx equal to ? where c is the constant of integration

    A
    `(a^(x)e^(x))/(l na) + c`
    B
    `a^(x) e^(x) + c`
    C
    `(a^(x) e^(x))/(l n(ae)) + c`
    D
    None of the above
  • If int (x+1)/(sqrt(2x-1))dx = f(x)sqrt(2x-1)+C , where C is a constant of integration, then f(x) is equal to

    A
    `(2)/(3)(x+2)`
    B
    `(1)/(3)(x+4)`
    C
    `(2)/(3)(x-4)`
    D
    `(1)/(3)(x+1)`
  • Similar Questions

    Explore conceptually related problems

    If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

    If inte^(sinx)((xcos^(3)x-sinx)/(cos^(2)x))dx=e^(sinx)f(x)+c , where c is constant of integration, then f(x)=

    int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

    int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

    if int x^(5)e^(-x^(2))dx=g(x)e^(-x^(2))+c where c is a constant of integration then g(-1) is equal to